标签:
/* * 72. Edit Distance * 12.10 by Mingyang * dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。 * 假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。 以下两种可能性: 1. * x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1] * 2. x != y * (1) 在word1插入y,那么dp[i][j] = dp[i][j-1] + 1 * (2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1 * (3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1 最少的步骤就是取这三个中的最小值。 * 一点关于DP的小总结,一定要设定len+1个数,因为dp[0][0]没什么意义,最后还是求的dp[len1][len2] * 然后记住,一个string为0的时候另一个就全是i */ public static int minDistance(String word1, String word2) { int len1 = word1.length(); int len2 = word2.length(); // len1+1, len2+1, because finally return dp[len1][len2] int[][] dp = new int[len1 + 1][len2 + 1]; for (int i = 0; i <= len1; i++) dp[i][0] = i; for (int j = 0; j <= len2; j++) dp[0][j] = j; // iterate though, and check last char for (int i = 1; i <= len1; i++) { char c1 = word1.charAt(i - 1); for (int j = 1; j <= len2; j++) { char c2 = word2.charAt(j - 1); // if last two chars equal if (c1 == c2) { // update dp value for +1 length dp[i][j] = dp[i - 1][j - 1]; } else { int replace = dp[i - 1][j - 1] + 1; int insert = dp[i - 1][j] + 1; int delete = dp[i][j - 1] + 1; int min = Math.min(replace, insert); min = Math.min(min, delete); dp[i][j] = min; } } } return dp[len1][len2]; }
标签:
原文地址:http://www.cnblogs.com/zmyvszk/p/5480986.html