标签:
MR程序的执行环境有两种:本地测试环境、服务器环境。
1、本地环境执行MR程序的步骤:
(1)在windows下配置hadoop的环境变量
(2)拷贝debug工具(winutils)到HADOOP_HOME/bin
(3)从源码中拷贝org.apache.hadoop.io.nativeio.NativeIO.java到我们的mr的src目录下,修改NativeIO.java。(大家可去http://download.csdn.net/detail/u013226462/9516657下载。)注意:确保项目的lib需要真实安装的jdk的lib
(4)MR程序调用配置文件的代码需要改变:
a、src不能有服务器的hadoop配置文件
b、在调用时使用:
Configuration config = new Configuration(); config.set("fs.defaultFS", "hdfs://lida1:8020"); config.set("yarn.resourcemanager.hostname", "lida1");
下面详细介绍如何在本地直接调用MR,在服务器上执行MR。
说明:输入文件、输出路径、项目结构如下图所示
1)、编写MR代码
/**2016年4月29日 *auther:lida *wordCount *com.dada.wordCount *RunTest.java * */ package com.dada.mr; /** * @author lida * */ import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WC { public static Text k = new Text(); public static IntWritable v = new IntWritable(1); public static void main(String[] args) { Configuration config = new Configuration(); config.set("fs.defaultFS", "hdfs://lida1:8020"); config.set("yarn.resourcemanager.hostname", "lida1"); try { FileSystem fs = FileSystem.get(config); Job job = Job.getInstance(config); job.setJarByClass(WC.class); job.setJobName("wc"); job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); job.setCombinerClass(WordCountReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // 设置MR执行的输入文件 FileInputFormat.addInputPath(job, new Path("/lida-hdfs_1/input_files/wordCount")); // 该目录表示MR执行之后的结果数据所在目录,必须不能存在 Path outputPath = new Path("/lida-hdfs_1/output_files"); // 注意:输入文件的绝对路径为:/lida-hdfs_1/input_files/wordCount/wordCount.txt,但是,命令行里不用写其绝对路径。 if (fs.exists(outputPath)) { fs.delete(outputPath, true); } FileOutputFormat.setOutputPath(job, outputPath); boolean f = job.waitForCompletion(true); if (f) { System.out.println("job 成功执行"); } } catch (Exception e) { e.printStackTrace(); } } public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { // map task执行过程中调用的方法,计算框架会循环调用该方法,默认每行数据调用一次 protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer st = new StringTokenizer(line); while (st.hasMoreTokens()) { String word = st.nextToken(); k.set(word); context.write(k, v); } } } public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { protected void reduce(Text arg0, Iterable<IntWritable> arg1, Context arg2) throws IOException, InterruptedException { int sum = 0; for (IntWritable i : arg1) { sum = sum + i.get(); } v.set(sum); arg2.write(arg0, v); } } }
如果eclipse控制台没报错,那么该MR程序是没问题的。可从下图看到MR的执行过程。
当MR执行完毕后,可从下面两图中看到执行结果。
然后在DFS Location就能看到MR程序的执行结果。如下图所示:
2、服务器环境执行MR程序的步骤:
2.1、在本地直接调用MR,执行MR的过程在服务器上(真正企业运行环境)
(1)在src下放置服务器上的hadoop配置文件
(2)从源码中拷贝 org.apache.hadoop.mapred.YRANRunner.java到我们的mr的src目录下,修改YARNRunner.java。注意:确保项目的lib需要真实安装的jdk的lib
(3)把MR程序打包(jar),直接放到本地
(4)本地执行main方法,servlet调用MR。
下面详细介绍如何在本地直接调用MR,在服务器上执行MR。
说明:输入文件、输出路径、项目结构如下图所示
1)、编写代码
/**2016年4月29日 *auther:lida *wordCount *com.dada.wordCount *RunTest.java * */ package com.dada.mr; /** * @author lida * */ import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WC { public static Text k = new Text(); public static IntWritable v = new IntWritable(1); public static void main(String[] args) { Configuration config = new Configuration(); try { FileSystem fs = FileSystem.get(config); Job job = Job.getInstance(config); job.setJar("C:\\Users\\lida\\Desktop\\wc.jar"); //此处的写法和其他人的写法(job.setJarByClass(XX.class) )可能不同,原因是这样写会报错,下面的错误总结会讲到。 job.setJobName("wc"); job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); job.setCombinerClass(WordCountReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // 设置MR执行的输入文件 FileInputFormat.addInputPath(job, new Path("/lida-hdfs_1/input_files/wordCount")); // 该目录表示MR执行之后的结果数据所在目录,必须不能存在 Path outputPath = new Path("/lida-hdfs_1/output_files"); // 注意:输入文件的绝对路径为:/lida-hdfs_1/input_files/wordCount/wordCount.txt,但是,命令行里不用写其绝对路径。 if (fs.exists(outputPath)) { fs.delete(outputPath, true); } FileOutputFormat.setOutputPath(job, outputPath); boolean f = job.waitForCompletion(true); if (f) { System.out.println("job 成功执行"); } } catch (Exception e) { e.printStackTrace(); } } public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { // map task执行过程中调用的方法,计算框架会循环调用该方法,默认每行数据调用一次 protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer st = new StringTokenizer(line); while (st.hasMoreTokens()) { String word = st.nextToken(); k.set(word); context.write(k, v); } } } public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { protected void reduce(Text arg0, Iterable<IntWritable> arg1, Context arg2) throws IOException, InterruptedException { int sum = 0; for (IntWritable i : arg1) { sum = sum + i.get(); } v.set(sum); arg2.write(arg0, v); } } }
5)、监控。监控方式同上。
2.2、直接在服务器上使用命令的方式调用MR程序,执行过程也在服务器上
(1)把MR程序打包(jar),传送到服务器上
(2)通过命令:hadoop jar jar路径 类的全限定名 例如:hadoop jar /examples/wc.jar com.dada.mr.WordCount(wc.jar为打包好的jar包名;com.dada.mr为man方法所在的包名;WordCount为man方法所在的类)执行MR程序。
下面详细介绍如何在服务器上执行MR程序。
说明:输入文件、输出路径、项目结构如下图所示
/** * */ package com.dada.mr; /** * @author 李达 * * 2016年5月5日 * wordCount * com.dada.wc */ import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WC { public static Text k = new Text(); public static IntWritable v = new IntWritable(1); public static void main(String[] args) { Configuration config = new Configuration(); try { FileSystem fs = FileSystem.get(config); Job job = Job.getInstance(config); job.setJarByClass(WC.class); job.setJobName("wc"); job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); job.setCombinerClass(WordCountReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // 有两种方式解决输入、输出路径的问题: // 1、代码中写死 // 设置MR执行的输入文件 // FileInputFormat.addInputPath(job, new //Path("/lida-hdfs_1/input_files/wordCount")); // 该目录表示MR执行之后的结果数据所在目录,必须不能存在 // Path outputPath = new Path("/lida-hdfs_1/output_files"); // 2、代码中不写死,写个参数,当在命令行执行MR时,再传参(官网是这么干的)。 FileInputFormat.addInputPath(job, new Path(args[0])); Path outputPath = new Path(args[1]); // 命令行脚本如下: // ./hadoop jar /examplesByLiDa/wc.jar com.dada.mr.WC /lida-hdfs_1/input_files/wordCount /lida-hdfs_1/output_files // 注意:输入文件的绝对路径为:/lida-hdfs_1/input_files/wordCount/wordCount.txt,但是,命令行里不用写其绝对路径。 if (fs.exists(outputPath)) { fs.delete(outputPath, true); } FileOutputFormat.setOutputPath(job, outputPath); boolean f = job.waitForCompletion(true); if (f) { System.out.println("job 成功执行"); } } catch (Exception e) { e.printStackTrace(); } } static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { // map task执行过程中调用的方法,计算框架会循环调用该方法,默认每行数据调用一次 protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer st = new StringTokenizer(line); while (st.hasMoreTokens()) { String word = st.nextToken(); k.set(word); context.write(k, v); } } } static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { protected void reduce(Text arg0, Iterable<IntWritable> arg1, Context arg2) throws IOException, InterruptedException { int sum = 0; for (IntWritable i : arg1) { sum = sum + i.get(); } v.set(sum); arg2.write(arg0, v); } } }
2)、打包。和普通java程序的打包方式相同。
3)、执行
(1)把打好的jar包传到hdfs(actvice)所在的服务器上
(2)进入hadoop/bin/下,执行脚本
./hadoop jar /examplesByLiDa/wc.jar com.dada.mr.WC /lida-hdfs_1/input_files/wordCount /lida-hdfs_1/output_files
4)、监控。监控方式同上。
到此,全剧终!
附:测试过程中遇到的问题及解决方法
问题1:
org.apache.hadoop.security.AccessControlException: Permission denied: user=aolei, access=EXECUTE, inode="/tmp":root:supergroup:drwx------ at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkFsPermission(FSPermissionChecker.java:271) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:257) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:208) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:171) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkPermission(FSNamesystem.java:5904) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkPermission(FSNamesystem.java:5886) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkOwner(FSNamesystem.java:5842) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.setPermissionInt(FSNamesystem.java:1626) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.setPermission(FSNamesystem.java:1607) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.setPermission(NameNodeRpcServer.java:579) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.setPermission(ClientNamenodeProtocolServerSideTranslatorPB.java:416) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:585) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:928) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2013) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2009) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1614) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2007) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(Unknown Source) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(Unknown Source) at java.lang.reflect.Constructor.newInstance(Unknown Source) at org.apache.hadoop.ipc.RemoteException.instantiateException(RemoteException.java:106) at org.apache.hadoop.ipc.RemoteException.unwrapRemoteException(RemoteException.java:73) at org.apache.hadoop.hdfs.DFSClient.setPermission(DFSClient.java:2165) at org.apache.hadoop.hdfs.DistributedFileSystem$23.doCall(DistributedFileSystem.java:1236) at org.apache.hadoop.hdfs.DistributedFileSystem$23.doCall(DistributedFileSystem.java:1232) at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81) at org.apache.hadoop.hdfs.DistributedFileSystem.setPermission(DistributedFileSystem.java:1232) at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:597) at org.apache.hadoop.mapreduce.JobSubmitter.copyAndConfigureFiles(JobSubmitter.java:179) at org.apache.hadoop.mapreduce.JobSubmitter.copyAndConfigureFiles(JobSubmitter.java:301) at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:389) at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1285) at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1282) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Unknown Source) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1614) at org.apache.hadoop.mapreduce.Job.submit(Job.java:1282) at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1303) at com.dada.mr.WC.main(WC.java:66) Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=aolei, access=EXECUTE, inode="/tmp":root:supergroup:drwx------ at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkFsPermission(FSPermissionChecker.java:271) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:257) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkTraverse(FSPermissionChecker.java:208) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:171) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkPermission(FSNamesystem.java:5904) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkPermission(FSNamesystem.java:5886) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.checkOwner(FSNamesystem.java:5842) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.setPermissionInt(FSNamesystem.java:1626) at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.setPermission(FSNamesystem.java:1607) at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.setPermission(NameNodeRpcServer.java:579) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.setPermission(ClientNamenodeProtocolServerSideTranslatorPB.java:416) at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java) at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:585) at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:928) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2013) at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2009) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1614) at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2007) at org.apache.hadoop.ipc.Client.call(Client.java:1411) at org.apache.hadoop.ipc.Client.call(Client.java:1364) at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:206) at com.sun.proxy.$Proxy14.setPermission(Unknown Source) at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.setPermission(ClientNamenodeProtocolTranslatorPB.java:314) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source) at java.lang.reflect.Method.invoke(Unknown Source) at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:187) at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102) at com.sun.proxy.$Proxy15.setPermission(Unknown Source) at org.apache.hadoop.hdfs.DFSClient.setPermission(DFSClient.java:2163) ... 16 more
解决方法:
<property> <name>dfs.permissions</name> <value>false</value> </property>
hadoop dfsadmin -refreshNodes或者
hadoop fs -chmod 777 /tmp
ExitCodeException exitCode=1: /bin/bash: line 0: fg: no job control at org.apache.hadoop.util.Shell.runCommand(Shell.java:538) at org.apache.hadoop.util.Shell.run(Shell.java:455) at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:702) at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:195) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:300) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:81) at java.util.concurrent.FutureTask.run(FutureTask.java:262) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Container exited with a non-zero exit code 1 .Failing this attempt.. Failing the application. 2016-05-09 16:43:11,531 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Counters: 0解决方法:http://www.360doc.com/content/14/0728/11/597197_397616444.shtml
2016-05-09 17:15:03,121 WARN [main] util.NativeCodeLoader (NativeCodeLoader.java:<clinit>(62)) - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 2016-05-09 17:15:06,883 WARN [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(150)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 2016-05-09 17:15:06,909 WARN [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(259)) - No job jar file set. User classes may not be found. See Job or Job#setJar(String). 2016-05-09 17:15:06,947 INFO [main] input.FileInputFormat (FileInputFormat.java:listStatus(281)) - Total input paths to process : 1 2016-05-09 17:15:07,237 INFO [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(396)) - number of splits:1 2016-05-09 17:15:07,419 INFO [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(479)) - Submitting tokens for job: job_1462791130009_0014 2016-05-09 17:15:07,535 INFO [main] mapred.YARNRunner (YARNRunner.java:createApplicationSubmissionContext(374)) - Job jar is not present. Not adding any jar to the list of resources. 2016-05-09 17:15:07,575 INFO [main] impl.YarnClientImpl (YarnClientImpl.java:submitApplication(236)) - Submitted application application_1462791130009_0014 2016-05-09 17:15:07,605 INFO [main] mapreduce.Job (Job.java:submit(1289)) - The url to track the job: http://lida1:8088/proxy/application_1462791130009_0014/ 2016-05-09 17:15:07,606 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1334)) - Running job: job_1462791130009_0014 2016-05-09 17:15:11,665 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1355)) - Job job_1462791130009_0014 running in uber mode : false 2016-05-09 17:15:11,668 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1362)) - map 0% reduce 0% 2016-05-09 17:15:11,700 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1375)) - Job job_1462791130009_0014 failed with state FAILED due to: Application application_1462791130009_0014 failed 2 times due to AM Container for appattempt_1462791130009_0014_000002 exited with exitCode: 1 due to: Exception from container-launch: ExitCodeException exitCode=1: ExitCodeException exitCode=1: at org.apache.hadoop.util.Shell.runCommand(Shell.java:538) at org.apache.hadoop.util.Shell.run(Shell.java:455) at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:702) at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:195) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:300) at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:81) at java.util.concurrent.FutureTask.run(FutureTask.java:262) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) Container exited with a non-zero exit code 1 .Failing this attempt.. Failing the application. 2016-05-09 17:15:11,723 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Counters: 0另外,从图形化界面上可看到还有一个报错信息,如下图:
解决方法:http://www.cnblogs.com/gaoxing/p/4466924.html 在mapred-site.xml中添加进hadoopjar包即可。
问题4:
2016-05-09 17:49:30,572 INFO [main] mapreduce.Job (Job.java:printTaskEvents(1441)) - Task Id : attempt_1462791130009_0020_m_000000_2, Status : FAILED Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.dada.mr.WC$WordCountMapper not found at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1905) at org.apache.hadoop.mapreduce.task.JobContextImpl.getMapperClass(JobContextImpl.java:186) at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:722) at org.apache.hadoop.mapred.MapTask.run(MapTask.java:340) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1614) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163) Caused by: java.lang.ClassNotFoundException: Class com.dada.mr.WC$WordCountMapper not found at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1811) at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:1903) ... 8 more 2016-05-09 17:49:37,635 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1362)) - map 100% reduce 100% 2016-05-09 17:49:37,670 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1375)) - Job job_1462791130009_0020 failed with state FAILED due to: Task failed task_1462791130009_0020_m_000000 Job failed as tasks failed. failedMaps:1 failedReduces:0 2016-05-09 17:49:37,761 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Counters: 9 Job Counters Failed map tasks=4 Launched map tasks=4 Other local map tasks=3 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=16275 Total time spent by all reduces in occupied slots (ms)=0 Total time spent by all map tasks (ms)=16275 Total vcore-seconds taken by all map tasks=16275 Total megabyte-seconds taken by all map tasks=16665600参考链接:http://stackoverflow.com/questions/21373550/class-not-found-exception-in-mapreduce-wordcount-job
解决方法:
job.setJar("wordcount.jar");
详述执行map reduce 程序的步骤(本地执行MR、服务器上执行MR)
标签:
原文地址:http://blog.csdn.net/u013226462/article/details/51372943