标签:
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 2 6 2 10 2 2 5 6 1 0 2 7 0 2 2 7 5 10 6 10 2 10 6 1 9
7 379297
题目大意:单词A-Z具有1-26的价值,现有字母A-Z的个数num[i],求问在不超过价值为五十的情况下,有多少种字母的组合数;
解题思路:母函数;用指数代表价值,价值又为数组的下标;用系数代表组成该价值的方案数,方案数为数组中存的值;
代码如下:
#include"iostream"
#include"cstdio"
#include"cstring"
using namespace std;
const int maxn = 50;
int num[maxn + 1];
int c1[maxn + 1], c2[maxn + 1];
int main(){
int T;
scanf("%d",&T);
while(T --){
for(int i = 1;i <= 26;i ++)
scanf("%d", &num[i]);
memset(c1, 0, sizeof c1);
memset(c2, 0, sizeof c2);
for(int i = 0;i <= num[1];i ++)
c1[i] = 1;
for(int i = 2;i <= 26;i ++){ //共有26个多项式
if(num[i] == 0) continue;
for(int j = 0;j <= maxn;j ++){ //共有maxn+1项
for(int k = 0;k <= num[i] && j + k*i <= maxn;k ++)
c2[j + k*i] += c1[j];
}
for(int j = 0;j <= maxn;j ++){
c1[j] = c2[j];
c2[j] = 0;
}
}
int sum = 0;
for(int j = 1;j <= maxn;j ++)
sum += c1[j];
printf("%d\n",sum);
}
return 0;
}标签:
原文地址:http://blog.csdn.net/keeping111/article/details/51351571