标签:
一个完整的电商系统,分为前台交易系统与后台作业系统,前后台共库是传统企业在设计电商项目时的一个常见做法。但这个做法引发了上线后的诸多麻烦。在前台交易系统处于峰值情况下,数据库本身已存在很大的压力,此时如果后台作业系统产生大规模的查询或写入请求,则很容易造成数据库无法响应。我们在很多客户案例中发现,如果前后台共库,正常非峰值情况下,每日订单数只要超过2000单,就会不同程度地出现前后台互相干扰,数据库成为主要瓶颈。此时,客户不得不在系统高峰时停止在后台作业系统上的操作,这给业务造成了很大伤害,发货延时、客服水平下降、统计不准确等情况成了家常便饭。实际上,从架构上来说,前台交易系统与后台作业系统服务的用户对象不同,前者是消费者,后者是企业内部员工,完全可以进行系统分离,两者之间采用消息队列进行异步订单传输,以隔离互相之间的影响。
当然,对于交易系统,我们也要根据业务特征进行分布式设计,提升业务扩展性、应对高负载。例如对商品货架系统、会员系统、核心交易系统、资金系统、日志系统等以高内聚、低耦合的原则进行分离,以分别根据不同的访问特征进行优化。
根据分布式架构的CAP理论,Consistency(一致性)、 Availability(可用性)和Partition tolerance(分区容忍性)最多只能同时满足两点。对于一个峰值系统而言,分布式(分区)设计是必然的,可用性也是基础要求,因此,我们只能放弃一致性要求,只达到最终一致性。不过,在一个电商系统的架构设计中,最容易出现的问题是滥用CAP原则。例如在交易过程中,后台的供应能力(库存)是至关重要的,在交易生成过程必须要保证严格一致性,而不是最终一致性,这就要求我们以事务的方式来解决。否则,虽然在架构实践中很容易达到从容应对峰值访问的目的,但超卖等伤害业务的现象必然会出现。
在分布式系统设计中,必然要求我们采用面向服务的体系结构(SOA)。但需要在设计中注意几点。第一,在峰值系统中,每一个多余字节的传输都意味着对系统的极大开销,以每日1000万PV为例,假设这是每个请求都需要调用的服务,每新增一个字节,就意味着会新增10MB的流量。第二,千万不要直接使用自己企业内部IT原来部署的服务。这是因为企业内部原有的SOA服务不是为互联网峰值系统所设计的。我们曾经有一个客户,在电商网站上使用了企业内部IT提供的客户验证服务,看上去只是一个简单查询,结果甫一上线,直接导致该服务崩溃,进而引发整个内部IT SOA体系的下线,对内部系统造成的影响用了好几天才得以消除,更不用说对线上系统的影响了,严重伤害了企业的形象。第三,幂等原则。假设所有的服务调用都是不可靠的,所以重试是常态,因此对于重复的API写入操作应进行判重处理。
标签:
原文地址:http://blog.csdn.net/qd824692746/article/details/51346272