码迷,mamicode.com
首页 > 其他好文 > 详细

2016.4.15 近期要读的论文

时间:2016-05-13 01:53:53      阅读:242      评论:0      收藏:0      [点我收藏+]

标签:

图像识别

1. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deepconvolutional neural networks. In Proc. Advances in Neural InformationProcessing Systems 25 1090–1098 (2012).This report was a breakthrough that used convolutional nets to almost halvethe error rate for object recognition, and precipitated the rapid adoption ofdeep learning by the computer vision community.

2. Farabet, C., Couprie, C., Najman, L. & LeCun, Y. Learning hierarchical features forscene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013).

3. Tompson, J., Jain, A., LeCun, Y. & Bregler, C. Joint training of a convolutionalnetwork and a graphical model for human pose estimation. In Proc. Advances inNeural Information Processing Systems 27 1799–1807 (2014).

4. Szegedy, C. et al. Going deeper with convolutions. Preprint at http://arxiv.org/abs/1409.4842 (2014).

使用ReLU从而避免unsupervised pre-training

28. Glorot, X., Bordes, A. & Bengio. Y. Deep sparse rectifier neural networks. In Proc.14th International Conference on Artificial Intelligence and Statistics 315–323(2011).

This paper showed that supervised training of very deep neural networks is much faster if the hidden layers are composed of ReLU.

深度网络重燃战火

31. Hinton, G. E. What kind of graphical model is the brain? In Proc. 19th International Joint Conference on Artificial intelligence 1765–1775 (2005).

32. Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comp. 18, 1527–1554 (2006).

This paper introduced a novel and effective way of training very deep neural networks by pre-training one hidden layer at a time using the unsupervised learning procedure for restricted Boltzmann machines.

33. Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. Greedy layer-wise training of deep networks. In Proc. Advances in Neural Information Processing Systems 19 153–160 (2006).

This report demonstrated that the unsupervised pre-training method introduced in ref. 32 significantly improves performance on test data and generalizes the method to other unsupervised representation-learning techniques, such as auto-encoders.

34. Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. Efficient learning of sparse representations with an energy-based model. In Proc. Advances in Neural Information Processing Systems 19 1137–1144 (2006).

无监督初始化,bp fine-tune

33. Bengio, Y., Lamblin, P., Popovici, D. & Larochelle, H. Greedy layer-wise trainingof deep networks. In Proc. Advances in Neural Information Processing Systems 19 153–160 (2006).

This report demonstrated that the unsupervised pre-training method introduced in ref. 32 significantly improves performance on test data and generalizes the method to other unsupervised representation-learning techniques, such as auto-encoders.

34. Ranzato, M., Poultney, C., Chopra, S. & LeCun, Y. Efficient learning of sparse representations with an energy-based model. In Proc. Advances in Neural Information Processing Systems 19 1137–1144 (2006).

35. Hinton, G. E. & Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

小数据上采用pre-training + fine-tune进行手写数字识别和行人检测

36. Sermanet, P., Kavukcuoglu, K., Chintala, S. & LeCun, Y. Pedestrian detection with unsupervised multi-stage feature learning. In Proc. International Conference on Computer Vision and Pattern Recognition http://arxiv.org/abs/1212.0142 (2013).

采用gpu进行训练

37. Raina, R., Madhavan, A. & Ng, A. Y. Large-scale deep unsupervised learning using graphics processors. In Proc. 26th Annual International Conference on Machine Learning 873–880 (2009).

小数据集上pre-training 防止过拟合

40. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Machine Intell. 35, 1798–1828 (2013).

卷积神经网络

41. LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. In Proc. Advances in Neural Information Processing Systems 396–404 (1990).

This is the first paper on convolutional networks trained by backpropagation for the task of classifying low-resolution images of handwritten digits.

42. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

This overview paper on the principles of end-to-end training of modular systems such as deep neural networks using gradient-based optimization showed how neural networks (and in particular convolutional nets) can be combined with search or inference mechanisms to model complex outputs that are interdependent, such as sequences of characters associated with the content of a document.

视觉神经元启发卷积和池化层

43. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

44. Felleman, D. J. & Essen, D. C. V. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

一个研究关于convnet和猴子面对同一个神经元在高层次的表现

45. Cadieu, C. F. et al. Deep neural networks rival the representation of primate it cortex for core visual object recognition. PLoS Comp. Biol. 10, e1003963 (2014).

微软进行光学字符识别和手写数字识别

49. Simard, D., Steinkraus, P. Y. & Platt, J. C. Best practices for convolutional neural networks. In Proc. Document Analysis and Recognition 958–963 (2003).

自然图片中的物体检测

50. Vaillant, R., Monrocq, C. & LeCun, Y. Original approach for the localisation of objects in images. In Proc. Vision, Image, and Signal Processing 141, 245–250(1994).

51. Nowlan, S. & Platt, J. in Neural Information Processing Systems 901–908 (1995).

面部识别

52. Lawrence, S., Giles, C. L., Tsoi, A. C. & Back, A. D. Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Networks 8, 98–113(1997).

交通信号识别

53. Ciresan, D., Meier, U. Masci, J. & Schmidhuber, J. Multi-column deep neural network for traffic sign classification. Neural Networks 32, 333–338 (2012).

生物图像切割

54. Ning, F. et al. Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Process. 14, 1360–1371 (2005).

面部检测、行人检测、躯干检测等

36. Sermanet, P., Kavukcuoglu, K., Chintala, S. & LeCun, Y. Pedestrian detection with unsupervised multi-stage feature learning. In Proc. International Conference on Computer Vision and Pattern Recognition http://arxiv.org/abs/1212.0142 (2013).

50. Vaillant, R., Monrocq, C. & LeCun, Y. Original approach for the localisation of objects in images. In Proc. Vision, Image, and Signal Processing 141, 245–250(1994).

51. Nowlan, S. & Platt, J. in Neural Information Processing Systems 901–908 (1995).

56. Garcia, C. & Delakis, M. Convolutional face finder: a neural architecture for fast and robust face detection. IEEE Trans. Pattern Anal. Machine Intell. 26,1408–1423 (2004).

57. Osadchy, M., LeCun, Y. & Miller, M. Synergistic face detection and pose estimation with energy-based models. J. Mach. Learn. Res. 8, 1197–1215 (2007).

58. Tompson, J., Goroshin, R. R., Jain, A., LeCun, Y. Y. & Bregler, C. C. Efficient object localization using convolutional networks. In Proc. Conference on Computer Vision and Pattern Recognition http://arxiv.org/abs/1411.4280 (2014).

面部识别

59. Taigman, Y., Yang, M., Ranzato, M. & Wolf, L. Deepface: closing the gap to human-level performance in face verification. In Proc. Conference on Computer Vision and Pattern Recognition 1701–1708 (2014).

dropout

62. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Machine Learning Res. 15, 1929–1958 (2014).

识别和检测

4. Szegedy, C. et al. Going deeper with convolutions. Preprint at http://arxiv.org/abs/1409.4842 (2014).

58. Tompson, J., Goroshin, R. R., Jain, A., LeCun, Y. Y. & Bregler, C. C. Efficient object localization using convolutional networks. In Proc. Conference on Computer Vision and Pattern Recognition http://arxiv.org/abs/1411.4280 (2014).

59. Taigman, Y., Yang, M., Ranzato, M. & Wolf, L. Deepface: closing the gap to human-level performance in face verification. In Proc. Conference on Computer Vision and Pattern Recognition 1701–1708 (2014).

63. Sermanet, P. et al. Overfeat: integrated recognition, localization and detection using convolutional networks. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1312.6229 (2014).

64. Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. Conference on Computer Vision and Pattern Recognition 580–587 (2014).

65. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1409.1556 (2014).

distributed representations

21. Bengio, Y., Delalleau, O. & Le Roux, N. The curse of highly variable functions for local kernel machines. In Proc. Advances in Neural Information Processing Systems 18 107–114 (2005).

数据分布下的整体架构

40. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Machine Intell. 35, 1798–1828 (2013).

distributed representations增强泛化能力

68. Bengio, Y. Learning Deep Architectures for AI (Now, 2009).

69. Montufar, G. & Morton, J. When does a mixture of products contain a product of mixtures? J. Discrete Math. 29, 321–347 (2014).

深度增强表达能力

70. Montufar, G. F., Pascanu, R., Cho, K. & Bengio, Y. On the number of linear regions of deep neural networks. In Proc. Advances in Neural Information Processing Systems 27 2924–2932 (2014).

通过局部输入确定下一个输出

71. Bengio, Y., Ducharme, R. & Vincent, P. A neural probabilistic language model. In Proc. Advances in Neural Information Processing Systems 13 932–938 (2001). This paper introduced neural language models, which learn to convert a word symbol into a word vector or word embedding composed of learned semantic features in order to predict the next word in a sequence.

非监督学习

91. Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. The wake-sleep algorithm for unsupervised neural networks. Science 268, 1558–1161 (1995).

92. Salakhutdinov, R. & Hinton, G. Deep Boltzmann machines. In Proc. International Conference on Artificial Intelligence and Statistics 448–455 (2009).

93. Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In Proc. 25th International Conference on Machine Learning 1096–1103 (2008).

94. Kavukcuoglu, K. et al. Learning convolutional feature hierarchies for visual recognition. In Proc. Advances in Neural Information Processing Systems 23 1090–1098 (2010).

95. Gregor, K. & LeCun, Y. Learning fast approximations of sparse coding. In Proc. International Conference on Machine Learning 399–406 (2010).

96. Ranzato, M., Mnih, V., Susskind, J. M. & Hinton, G. E. Modeling natural images using gated MRFs. IEEE Trans. Pattern Anal. Machine Intell. 35, 2206–2222(2013).

97. Bengio, Y., Thibodeau-Laufer, E., Alain, G. & Yosinski, J. Deep generative stochastic networks trainable by backprop. In Proc. 31st International Conference on Machine Learning 226–234 (2014).

98. Kingma, D., Rezende, D., Mohamed, S. & Welling, M. Semi-supervised learning with deep generative models. In Proc. Advances in Neural Information Processing Systems 27 3581–3589 (2014).

cnnrnn使用增强学习进行视觉分类

99. Ba, J., Mnih, V. & Kavukcuoglu, K. Multiple object recognition with visual attention. In Proc. International Conference on Learning Representationshttp://arxiv.org/abs/1412.7755 (2014).

cnnrnn使用增强学习玩游戏

100. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature518, 529–533 (2015).

rnn learn strategies for selectively attending to one part at a time

76. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1409.0473 (2015).

86. Xu, K. et al. Show, attend and tell: Neural image caption generation with visual attention. In Proc. International Conference on Learning Representations http://arxiv.org/abs/1502.03044 (2015).

rnn关注图片特定位置

102. Vinyals, O., Toshev, A., Bengio, S. & Erhan, D. Show and tell: a neural image caption generator. In Proc. International Conference on Machine Learning http://arxiv.org/abs/1502.03044 (2014).

 

2016.4.15 近期要读的论文

标签:

原文地址:http://blog.csdn.net/zhaohui1995_yang/article/details/51346724

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!