码迷,mamicode.com
首页 > 其他好文 > 详细

内存管理---slab机制 销毁对象

时间:2016-05-13 02:31:32      阅读:278      评论:0      收藏:0      [点我收藏+]

标签:

 Linux内核中将对象释放到slab中上层所用函数为kfree()kmem_cache_free()。两个函数都会调用__cache_free()函数。

缓存回收对象基于以下原则

1.本地高速缓存的空间还可以容纳空闲对象,则直接将对象放回本地高速缓存

2.本地高速缓存的空间已满,则按batchcount的值将对象从本地高速缓存转移到slab中,转移是基于先进先出的原则的,也就是转移entry数组最前面的batchcount个空闲对象,因为这些对象在数组中存在的时间相对较长,不太可能仍然驻留在CPU高速缓存中

技术分享

1,当本地CPU cache中空闲对象数小于规定上限时,只需将对象放入本地CPU cache中;

2,当local cache中对象过多(大于等于规定上限),需要释放一批对象到slab三链中。由函数cache_flusharray()实现。

1)如果三链中存在共享本地cache,那么首先选择释放到共享本地cache中,能释放多少是多少;

2)如果没有shared local cache,释放对象到slab三链中,实现函数为free_block()。对于free_block()函数,当三链中的空闲对象数过多时,销毁此cache。不然,添加此slab到空闲链表。因为在分配的时候我们看到将slab结构从cache链表中脱离了,在这里,根据page描述符的lru找到slab并将它添加到三链的空闲链表中。

*
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
 */
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
    void *caller)
{
	struct array_cache *ac = cpu_cache_get(cachep); /* 获得本CPU的local cache */ 

	check_irq_off();
	kmemleak_free_recursive(objp, cachep->flags);
	objp = cache_free_debugcheck(cachep, objp, caller);

	kmemcheck_slab_free(cachep, objp, cachep->object_size);

	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
		return;
/*如果本地高速缓存中的空闲对象小于空闲对象上限,则直接用entry中的元素记录对象的地址*/  
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);/*否则将本地高速缓存中的空闲对象批量转移到slab中*/  
		cache_flusharray(cachep, ac);
	}

	ac_put_obj(cachep, ac, objp);//实际上执行ac->entry[ac->avail++] = objp;
}
/*local cache中对象过多,需要释放一批对象到slab三链中。*/
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
{
	int batchcount;
	struct kmem_list3 *l3;
	int node = numa_node_id();

	batchcount = ac->batchcount; /* 每次释放batchcount个对象 */  
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
	l3 = cachep->nodelists[node];
	spin_lock(&l3->list_lock);
	if (l3->shared) {/*如果开启了共享本地高速缓存*/
		/*获取共享的array_cache*/
		struct array_cache *shared_array = l3->shared; /* 如果存在shared local cache,将对象释放到其中 */ 
		/*计算共享本地高速缓存还可容纳的空闲对象数*/
		int max = shared_array->limit - shared_array->avail;
		if (max) {
			if (batchcount > max)
				batchcount = max;
			/*将batchcount个对象移到共享本地高速缓存中*/
			memcpy(&(shared_array->entry[shared_array->avail]),
			       ac->entry, sizeof(void *) * batchcount);
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

	/*将本地高速缓存的前batchcount个对象放回slab*/ /* 无shared local cache,释放对象到slab三链中 */  
	free_block(cachep, ac->entry, batchcount, node);
free_done:
#if STATS
	{
		int i = 0;
		struct list_head *p;

		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
	spin_unlock(&l3->list_lock);
	ac->avail -= batchcount;/*刷新本地高速缓存的avail值*/
/* local cache前面有batchcount个空位,将后面的对象依次前移batchcount位 */  
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
}

static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
		       int node)
{
	int i;
	struct kmem_list3 *l3;

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

		/*通过对象的虚拟地址得到slab描述符*/
<span style="white-space:pre">		/* 通过虚拟地址得到page,再通过page得到slab */ </span>
		slabp = virt_to_slab(objp);
		
		/*获取kmem_list3*/
		l3 = cachep->nodelists[node];
		
		/*先将slab从所在链表中删除*/
		list_del(&slabp->list);
		check_spinlock_acquired_node(cachep, node);
		check_slabp(cachep, slabp);
		
		/*将一个对象放回slab上*/
		slab_put_obj(cachep, slabp, objp, node);
		STATS_DEC_ACTIVE(cachep);
		
		/*kmem_list3中的空闲对象数加1*/
		l3->free_objects++;
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		/*slab的对象全部空闲*/
		if (slabp->inuse == 0) {
			/*如果空闲对象数大于了空闲对象上限*/
			if (l3->free_objects > l3->free_limit) {
				/*总空闲对象数减去一个slab的对象数*/
				l3->free_objects -= cachep->num;
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
				 /*销毁该slab*/
				slab_destroy(cachep, slabp);
			} else {
				/*将该slab添加到free链表*/
				list_add(&slabp->list, &l3->slabs_free);
			}
		} else {/*否则添加到partial链表*/
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
			list_add_tail(&slabp->list, &l3->slabs_partial);
		}
	}
}
对象释放到其slab

static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
{ 	/* 获得对象在kmem_bufctl_t数组中的索引 */
	unsigned int objnr = obj_to_index(cachep, slabp, objp);

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
		printk(KERN_ERR "slab: double free detected in cache "
				"'%s', objp %p\n", cachep->name, objp);
		BUG();
	}
#endif
	/*这两步相当于静态链表的插入操作*/
	/* 指向slab中原来的第一个空闲对象 */
	slab_bufctl(slabp)[objnr] = slabp->free;
	/* 释放的对象作为第一个空闲对象 */
	slabp->free = objnr;
	/* 已分配对象数减一 */
	slabp->inuse--;
}

/* 通过虚拟地址得到page,再通过page得到slab */
static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_head_page(obj);
	return page_get_slab(page);
}



内存管理---slab机制 销毁对象

标签:

原文地址:http://blog.csdn.net/u012681083/article/details/51345563

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!