标签:
B树:1970年,R.Bayer和E.mccreight提出了一种适合外查找的树,它是一种平衡的多叉树,称为B树。(有些地方写的是B-树,注意不要误读 成"B减树") 一棵M阶(M>2)的B树,是一棵平衡的M路平衡搜索树,可以是空树或者满足以下性质:
1. 根节点至少有两个孩子
2. 每个非根节点有[ (M/2)向上取整 ,M]个孩子
3. 每个非根节点有[ (M/2)向上取整 -1,M-1]个关键字,并且以升序排列
4. key[i]和key[i+1]之间的孩子节点的值介于key[i]、key[i+1]之间
5. 所有的叶子节点都在同一层
#include<iostream> using namespace std; template<class K, int M = 3> struct BTreeNode { K _keys[M]; BTreeNode<K, M>* _subs[M + 1]; size_t _size; BTreeNode<K, M>* _parent; BTreeNode() :_size(0) , _parent(NULL) { for (size_t i = 0; i < M + 1; ++i) { _subs[i] = NULL; } } }; template<class K, class V> struct Pair { K _first; V _second; Pair(const K& k = K(), const V& v = V()) :_first(k) , _second(v) {} }; template<class K, int M = 3> class BTree { typedef BTreeNode<K, M> Node; public: BTree() :_root(NULL) {} Pair<Node*, int> Find(const K& key) { Node* parent = NULL; Node* cur = _root; while (cur) { int i = 0; while (i < cur->_size && cur->_keys[i] < key) { ++i; } if (cur->_keys[i] == key) { return Pair<Node*, int>(cur, i); } parent = cur; cur = cur->_subs[i]; } return Pair<Node*, int>(parent, -1); } bool Insert(const K& key) { if (_root == NULL) { _root = new Node; _root->_keys[0] = key; ++_root->_size; return true; } Pair<Node*, int> ret = Find(key); if (ret._second != -1) { return false; } K k = key; Node *cur = ret._first; Node *sub = NULL; while (1) { _InsertKey(cur, k, sub); if (cur->_size < M) { return true; } int boundary = M / 2; Node *tmp = new Node; size_t index = 0; size_t size = cur->_size; for (int i = boundary + 1; i < size; ++i) { tmp->_keys[index++] = cur->_keys[i]; tmp->_size++; cur->_size--; } index = 0; for (int i = boundary + 1; i <= size; ++i) { tmp->_subs[index] = cur->_subs[i]; if (tmp->_subs[index]) { tmp->_subs[index]->_parent = tmp; } ++index; } k = cur->_keys[boundary]; cur->_size--; if (cur->_parent == NULL) { _root = new Node; _root->_keys[0] = k; _root->_subs[0] = cur; _root->_subs[1] = tmp; _root->_size = 1; tmp->_parent = _root; cur->_parent = _root; return true; } cur = cur->_parent; sub = tmp; } } void InOrder() { _InOrder(_root); cout << endl; } protected: void _InsertKey(Node* cur, const K& k, Node* sub) { int i = cur->_size - 1; while (i >= 0) { if (cur->_keys[i] > k) { cur->_keys[i + 1] = cur->_keys[i]; cur->_subs[i + 2] = cur->_subs[i + 1]; --i; } else { break; } } cur->_keys[i + 1] = k; cur->_subs[i + 2] = sub; if (sub != NULL) { sub->_parent = cur; } cur->_size++; } void _InOrder(Node* root) { if (root == NULL) { return; } for (size_t i = 0; i < root->_size; ++i) { _InOrder(root->_subs[i]); cout << root->_keys[i] << " "; } _InOrder(root->_subs[root->_size]); } private: Node* _root; }; int main() { int a[] = { 53, 75, 139, 49, 145, 36, 101 }; BTree<int> bt; for (int i = 0; i < sizeof(a) / sizeof(a[0]); i++) { bt.Insert(a[i]); } bt.InOrder(); return 0; }
标签:
原文地址:http://blog.csdn.net/mi_rencontre/article/details/51337069