码迷,mamicode.com
首页 > 其他好文 > 详细

乘法逆元及求法

时间:2016-05-13 13:30:28      阅读:177      评论:0      收藏:0      [点我收藏+]

标签:

在开始之前我们先介绍3个定理:

1.乘法逆元(在维基百科中也叫倒数,当然是 mod p后的,其实就是倒数不是吗?):

如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p的乘法逆元为x。

 

2.费马小定理(定义来自维基百科):

假如a是一个整数p是一个质数,那么技术分享是p的倍数,可以表示为

技术分享

如果a不是p的倍数,这个定理也可以写成

技术分享
3.

扩展欧几里得

(定义来自维基百科):

已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y(其中一个很可能是负数),使它们满足贝祖等式技术分享

 

好了,在明白上面的定理后我们开始分析乘法逆元:ax≡1 (mod p) 这个等式用中文描述就是 a乘一个数x并模p等于1,即 a%p*x%p=res,res%p=1;看上去就是同余定理的一个简单等式- -。那么问题来了。

 

为什么可以用费马小定理来求逆元呢?

由费马小定理 ap-1≡1 两边同时乘 ap-1 得 ap-2ap-1 ,两边同时除 ap-1 得 ap-2/ ap-1≡1, 变形得 a*ap-2≡1(mod p),答案已经很明显了:若a,p互质,因为a*ap-2≡1(mod p)且a*x≡1(mod p),则x=ap-2(mod p),用快速幂可快速求之。

 

为什么可以用扩展欧几里得求得逆元?

我们都知道模就是余数,比如12%3=12-12/3=1,18%2=18-18/5=3。(/是程序运算中的除)

那么ax≡1 (mod p)即ax-yp=1.把y写成+的形式就是ax+py=1,为方便理解下面我们把p写成b就是ax+by=1。就表示x是a的模b乘法逆元,y是b的模a乘法逆元。然后就可以用扩展欧几里得求了。

 

知道逆元怎么算之后,那么乘法逆元有什么用呢?

做题时如果结果过大一般都会让你模一个数,确保结果不是很大,而这个数一般是1e9+7,而且这个数又是个素数,加减乘与模运算的顺序交换不会影响结果,但是除法不行。有的题目要求结果mod一个大质数,如果原本的结果中有除法,比如除以a,那就可以乘以a的逆元替代。(除一个数等于乘它的倒数,虽然这里的逆元不完全是倒数,但可以这么理解,毕竟乘法逆元就是倒数的扩展)。

 

扩展欧几里得求逆元代码:

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

void exgcd(ll a,ll b,ll& d,ll& x,ll& y)
{
    if(!b) { d = a; x = 1; y = 0; }
    else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
}

ll inv(ll a, ll p)
{
    ll d, x, y;
    exgcd(a, p, d, x, y);
    return d == 1 ? (x+p)%p : -1;
}

int main()
{
    ll a,p;
    while(1)
    {
        scanf("%lld %lld",&a,&p);
        printf("%lld\n",inv(a,p));
    }
}

 

乘法逆元及求法

标签:

原文地址:http://www.cnblogs.com/dupengcheng/p/5487362.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!