上一节我们从总体上讲解了Spark Streaming job的运行机制。本节我们针对job如何生成进行详细的阐述,请看下图:
在Spark Streaming里,总体负责动态作业调度的具体类是JobScheduler:
/** * This class schedules jobs to be run on Spark. It uses the JobGenerator to generate * the jobs and runs them using a thread pool. * 这个类调度jobs在Spark上运行,它使用JobGenerator产生jobs,并且使用线程池来运行jobs */ private[streaming] class JobScheduler(val ssc: StreamingContext) extends Logging
JobScheduler有两个非常重要的成员:
JobGenerator
ReceiverTracker
JobScheduler 将每个batch的RDD DAG的具体生成工作委托给JobGenerator,将源头数据输入的记录工作委托给ReceiverTracker 。
在JobGenerator中有两个至关重要的成员就是RecurringTimer和EventLoop;RecurringTimer它控制了job的触发。每到batchInterval时间,就往EventLoop的队列中放入一个消息。而EventLoop则不断的查看消息队列,一旦有消息就处理;
在Spark Streaming应用程序中都会调用
ssc.start() //ssc 代表StreamingContext
这将隐含的导致一系列的模块的启动:
ssc.start()
--> scheduler.start()
--> jobGenerator.start()
我们来具体的看看JobGenerator.start()的代码:
def start(): Unit = synchronized { ... eventLoop.start() //启动RPC处理线程 if (ssc.isCheckpointPresent) { restart() // 如果不是第一次启动,就从Checkpoint中恢复 } else { startFirstTime() //第一次启动 } }
在startFirstTime中将DStreamGraph、定时器启动
private def startFirstTime() { val startTime = new Time(timer.getStartTime()) graph.start(startTime - graph.batchDuration) timer.start(startTime.milliseconds) logInfo("Started JobGenerator at " + startTime) }
定时器RecurringTimer启动后,使用线程每到一个新的batchInterval,就会向EventLoop中发生一个消息。
private def triggerActionForNextInterval(): Unit = { clock.waitTillTime(nextTime) callback(nextTime) prevTime = nextTime nextTime += period logDebug("Callback for " + name + " called at time " + prevTime) }
这里的callback函数就是RecurringTimer初始化时传入的匿名函数:
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds, longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
当EventLoop收到消息后:
override def run(): Unit = { try { while (!stopped.get) { val event = eventQueue.take() try { onReceive(event) } catch { case NonFatal(e) => { try { onError(e) } catch { case NonFatal(e) => logError("Unexpected error in " + name, e) } } } } } catch { case ie: InterruptedException => // exit even if eventQueue is not empty case NonFatal(e) => logError("Unexpected error in " + name, e) } }
不断的去处理事件:
/** Processes all events */ private def processEvent(event: JobGeneratorEvent) { logDebug("Got event " + event) event match { case GenerateJobs(time) => generateJobs(time) case ClearMetadata(time) => clearMetadata(time) case DoCheckpoint(time, clearCheckpointDataLater) => doCheckpoint(time, clearCheckpointDataLater) case ClearCheckpointData(time) => clearCheckpointData(time) } }
这里调用generateJobs方法:
private def generateJobs(time: Time) { // Set the SparkEnv in this thread, so that job generation code can access the environment // Example: BlockRDDs are created in this thread, and it needs to access BlockManager // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed. SparkEnv.set(ssc.env) Try { jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch graph.generateJobs(time) // generate jobs using allocated block } match { case Success(jobs) => val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time) jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos)) case Failure(e) => jobScheduler.reportError("Error generating jobs for time " + time, e) } eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false)) }
这段代码异常精悍,包含了JobGenerator主要工作4个步骤
要求ReceiverTracker将目前已收到的数据进行一次allocate,即将上次batch切分后的数据切分到到本次新的batch里
要求DStreamGraph复制出一套新的 RDD DAG 的实例。整个DStreamGraph.generateJobs(time)遍历结束的返回值是Seq[Job]
将第2步生成的本 batch 的 RDD DAG,和第1步获取到的 meta 信息,一同提交给JobScheduler异步执行这里我们提交的是将 (a) time (b) Seq[job] (c) 块数据的meta信息。这三者包装为一个JobSet,然后调用JobScheduler.submitJobSet(JobSet)提交给JobScheduler。这里的向JobScheduler提交过程与JobScheduler接下来在jobExecutor里执行过程是异步分离的,因此本步将非常快即可返回。
只要提交结束(不管是否已开始异步执行),就马上对整个系统的当前运行状态做一个checkpoint这里做checkpoint也只是异步提交一个DoCheckpoint消息请求,不用等 checkpoint 真正写完成即可返回这里也简单描述一下 checkpoint 包含的内容,包括已经提交了的、但尚未运行结束的JobSet等实际运行时信息。
备注:
1、DT大数据梦工厂微信公众号DT_Spark
2、IMF晚8点大数据实战YY直播频道号:68917580
3、新浪微博: http://www.weibo.com/ilovepains
本文出自 “叮咚” 博客,请务必保留此出处http://lqding.blog.51cto.com/9123978/1772958
第6课:Spark Streaming源码解读之Job动态生成和深度思考
原文地址:http://lqding.blog.51cto.com/9123978/1772958