码迷,mamicode.com
首页 > 其他好文 > 详细

第17课:RDD案例(join、cogroup等实战)

时间:2016-05-14 01:12:13      阅读:493      评论:0      收藏:0      [点我收藏+]

标签:spark rdd

本节课通过代码实战演示RDD中最重要的两个算子,join和cogroup


join算子代码实战:

//通过代码演示join算子
val conf = new SparkConf().setAppName("RDDDemo").setMaster("local")
val sc = new SparkContext(conf)
val arr1 = Array(Tuple2(1, "Spark"), Tuple2(2, "Hadoop"), Tuple2(3, "Tachyon"))
val arr2 = Array(Tuple2(1, 100), Tuple2(2, 70), Tuple2(3, 90))
val rdd1 = sc.parallelize(arr1)
val rdd2 = sc.parallelize(arr2)

val rdd3 = rdd1.join(rdd2)
rdd3.collect().foreach(println)


运行结果:

(1,(Spark,100))

(3,(Tachyon,90))

(2,(Hadoop,70))


cogroup算子代码实战:

首先通过java的方式编写:

        SparkConf conf = new SparkConf().setMaster("local").setAppName("Cogroup");

        JavaSparkContext sc = new JavaSparkContext(conf);


        List<Tuple2<Integer, String>> nameList = Arrays.asList(new Tuple2<Integer, String>(1, "Spark"),

                new Tuple2<Integer, String>(2, "Tachyon"), new Tuple2<Integer, String>(3, "Hadoop"));


        List<Tuple2<Integer, Integer>> ScoreList = Arrays.asList(new Tuple2<Integer, Integer>(1, 100),

                new Tuple2<Integer, Integer>(2, 95), new Tuple2<Integer, Integer>(3, 80),

                new Tuple2<Integer, Integer>(1, 80), new Tuple2<Integer, Integer>(2, 110),

                new Tuple2<Integer, Integer>(2, 90));


        JavaPairRDD<Integer, String> names = sc.parallelizePairs(nameList);

        JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(ScoreList);


        JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> nameAndScores = names.cogroup(scores);


        nameAndScores.foreach(new VoidFunction<Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>>>() {


            public void call(Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t) throws Exception {


                System.out.println("ID:" + t._1);

                System.out.println("Name:" + t._2._1);

                System.out.println("Score:" + t._2._2);

            }

        });


       sc.close();


运行结果:

ID:1

Name:[Spark]

Score:[100, 80]

ID:3

Name:[Hadoop]

Score:[80]

ID:2

Name:[Tachyon]

Score:[95, 110, 90]


通过Scala的方式:

val conf = new SparkConf().setAppName("RDDDemo").setMaster("local")
val sc = new SparkContext(conf)
val arr1 = Array(Tuple2(1, "Spark"), Tuple2(2, "Hadoop"), Tuple2(3, "Tachyon"))
val arr2 = Array(Tuple2(1, 100), Tuple2(2, 70), Tuple2(3, 90), Tuple2(1, 95), Tuple2(2, 65), Tuple2(1, 110))
val rdd1 = sc.parallelize(arr1)
val rdd2 = sc.parallelize(arr2)

val rdd3 = rdd1.cogroup(rdd2)
rdd3.collect().foreach(println)
sc.stop()


运行结果:

(1,(CompactBuffer(Spark),CompactBuffer(100, 95, 110)))

(3,(CompactBuffer(Tachyon),CompactBuffer(90)))

(2,(CompactBuffer(Hadoop),CompactBuffer(70, 65)))


备注:

资料来源于:DT_大数据梦工厂(Spark发行版本定制)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580


本文出自 “DT_Spark大数据梦工厂” 博客,转载请与作者联系!

第17课:RDD案例(join、cogroup等实战)

标签:spark rdd

原文地址:http://18610086859.blog.51cto.com/11484530/1773197

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!