Giving two strings consists of only lowercase letters, find the LCS(Longest Common Subsequence) whose all partition are not less than k in length.
标签:
Giving two strings consists of only lowercase letters, find the LCS(Longest Common Subsequence) whose all partition are not less than k in length.
There are multiple test cases. In each test case, each of the first two lines is a string(length is less than 2100). The third line is a positive integer k. The input will end by EOF.
For each test case, output the length of the two strings’ LCS.
abxccdef
abcxcdef
3
abccdef
abcdef
3
4
6
题目分析:设两个字符串分别为p和q,定义状态dp(i,j)表示p的前缀p(1~i)和q的前缀q(1~j)的满足题目要求的LCS的长度,定义g(i,j)表示满足题目要求的并且结尾字符为p(i)或q(j)(显然,这要求p(i)=q(j))的LCS的长度。
的长度。则状态转移方程为:dp(i,j)=max(dp(i-1,j),dp(i,j-1),g(i,j))。
代码如下:
# include<iostream> # include<cstdio> # include<cstring> # include<algorithm> using namespace std; int k; char p[2105]; char q[2105]; int f[2105][2105]; int g[2105][2105]; int dp[2105][2105]; int main() { //freopen("F.in","r",stdin); while(~scanf("%s%s%d",p+1,q+1,&k)) { memset(f,0,sizeof(f)); memset(g,0,sizeof(g)); memset(dp,0,sizeof(dp)); int n=strlen(p+1); int m=strlen(q+1); for(int i=1;i<=n;++i) for(int j=1;j<=m;++j) if(p[i]==q[j]) f[i][j]=f[i-1][j-1]+1; for(int i=1;i<=n;++i){ for(int j=1;j<=m;++j){ if(f[i][j]>=k){ g[i][j]=max(g[i][j],dp[i-k][j-k]+k); if(f[i][j]>k) g[i][j]=max(g[i][j],g[i-1][j-1]+1); } dp[i][j]=max(max(dp[i-1][j],dp[i][j-1]),g[i][j]); } } printf("%d\n",dp[n][m]); } return 0; }
标签:
原文地址:http://www.cnblogs.com/20143605--pcx/p/5496726.html