标签:c++builder c bmp gauss 位图
原文地址:http://blog.csdn.net/markl22222/article/details/10313565
进行了修正和变量优化。原来作者的函数只支持2次方图片,这次修正了(windows的bitmap行宽是4字节对齐的)。
基本完善了,但是在某些条件下,Y方向的底边还是会出现偏差,一时找不到原因,暂且发表,希望有人能提醒一下。
函数结构我规整了一下,很清晰,很好阅读。
int gauss_blur(
byte_t* image, //位图数据
int linebytes, //位图行字节数,BMP数据在windows中是4字节对齐的。否则在处理非二次幂的图像时会有偏差
int width, //位图宽度
int height, //位图高度
int cbyte, //颜色通道数量
float sigma //高斯系数
)
{
int x = 0, y = 0, n = 0;
int channel = 0;
int srcline = 0, dstline = 0;
int channelsize = width*height;
int bufsize = width > height ? width + 4 : height + 4;
float *w1 = NULL, *w2 = NULL, *imgbuf = NULL;
int time = 0;
#if defined(_INC_WINDOWS)
time = GetTickCount();
#elif defined(_CLOCK_T)
time = clock();
#endif
w1 = (float*)malloc(bufsize * sizeof(float));
if(!w1)
{
return -1;
}
w2 = (float*)malloc(bufsize * sizeof(float));
if(!w2)
{
free(w1);
return -1;
}
imgbuf = (float*)malloc(channelsize * sizeof(float));
if(!imgbuf)
{
free(w1);
free(w2);
return -1;
}
//----------------计算高斯核---------------------------------------//
float q = 0;
float q2 = 0, q3 = 0;
float b0 = 0, b1 = 0, b2 = 0, b3 = 0;
float B = 0;
if (sigma >= 2.5f)
{
q = 0.98711f * sigma - 0.96330f;
}
else if ((sigma >= 0.5f) && (sigma < 2.5f))
{
q = 3.97156f - 4.14554f * (float) sqrt (1.0f - 0.26891f * sigma);
}
else
{
q = 0.1147705018520355224609375f;
}
q2 = q * q;
q3 = q * q2;
b0 = (1.57825+ (2.44413f*q)+(1.4281f *q2)+(0.422205f*q3));
b1 = ( (2.44413f*q)+(2.85619f*q2)+(1.26661f* q3));
b2 = ( -((1.4281f*q2)+(1.26661f* q3)));
b3 = ( (0.422205f*q3));
B = 1.0-((b1+b2+b3)/b0);
b1 /= b0;
b2 /= b0;
b3 /= b0;
//----------------计算高斯核结束---------------------------------------//
<span style="white-space:pre"> </span>// 处理图像的多个通道
for (channel = 0; channel < cbyte; ++channel)
{
// 获取一个通道的所有像素值,并预处理
for(y=0; y<height; ++y)
{
srcline = y*linebytes;
dstline = y*width;
for(x=0, n=channel; x<width; ++x, n+=cbyte)
{
(imgbuf+dstline)[x] = float((image+srcline)[n]) + 1.0f;
}
}
for (int x=0; x<width; ++x)
{//横向处理
w1[0] = (imgbuf + x)[0];
w1[1] = (imgbuf + x)[0];
w1[2] = (imgbuf + x)[0];
for (y=0; y<height; ++y)
{
w1[y+3] = B*(imgbuf + x)[y*width] + (b1*w1[y+2] + b2*w1[y+1] + b3*w1[y+0]);
}
w2[width+0]= w1[width+2];
w2[width+1]= w1[width+1];
w2[width+2]= w1[width+0];
for (int y=height-1; y>=0; --y)
{
(imgbuf + x)[y*width] = w2[y] = B*w1[y+3] + (b1*w2[y+1] + b2*w2[y+2] + b3*w2[y+3]);
}
}//横向处理
for (y=0 ; y<height; ++y)
{//纵向处理
srcline = y * width;
dstline = y * linebytes;
//取当前行数据
w1[0] = (imgbuf + srcline)[0];
w1[1] = (imgbuf + srcline)[0];
w1[2] = (imgbuf + srcline)[0];
//正方向横向处理3个点的数据
for (x=0; x<width ; ++x)
{
w1[x+3] = B*(imgbuf + srcline)[x] + (b1*w1[x+2] + b2*w1[x+1] + b3*w1[x+0]);
}
w2[width+0]= w1[width+2];
w2[width+1]= w1[width+1];
w2[width+2]= w1[width+0];
//反方向处理
for (x=width-1; x>=0; --x)
{
//(imgbuf + dstline)[x] = w2[x] = B*w1[x+3] + (b1*w2[x+1] + b2*w2[x+2] + b3*w2[x+3]);
w2[x] = B*w1[x+3] + (b1*w2[x+1] + b2*w2[x+2] + b3*w2[x+3]);
//存储返回数据
(image + dstline)[x * cbyte + channel] = w2[x]-1;
}
}//纵向处理
/*
//存储处理完毕的通道
for(int y=0; y<height; y++)
{
int dstline = y*linebytes;
int srcline = y*width;
for (int x=0; x<width; x++)
{
//(image + dstline)[x * cbyte + channel] = (imgbuf + srcline)[x]-1;
//byte_comp((imgbuf + srcline)[x]-1);
}
}//存储循环
//*/
}//通道循环
free (w1);
free (w2);
free(imgbuf);
#if defined(_INC_WINDOWS)
return GetTickCount() - time;
#elif defined(_CLOCK_T)
return clock() - time;
#else
return 0;
#endif
}快速高斯滤波函数[修正完善版],布布扣,bubuko.com
标签:c++builder c bmp gauss 位图
原文地址:http://blog.csdn.net/sdragonx/article/details/38327503