码迷,mamicode.com
首页 > 其他好文 > 详细

所有节点对最短路径

时间:2016-05-18 14:44:38      阅读:306      评论:0      收藏:0      [点我收藏+]

标签:

一些约定:用d(i,j)表示节点i到节点j的最短路径,w(i,j)表示节点i到节点j的权重;
对于n个节点的图,采用邻接矩阵的方式输入输出,输出及中间结果的矩阵也是n*n的矩阵,第i行j列表示从i到j的当前最短路径

我们这里讲解三个算法,第一个是利用传统的动态规划,第二个也是个动态规划算法,但是基于一种观察结果,他就是warshall算法,第三个算法是将问题转换为没有负数权重的图,再对每个节点调用Dijkstra算法,他就是Johnson算法。

注意:通常情况下我们只用warshall算法,其他两个算法一个效率太低,一个写起来太麻烦。

动态规划求所有节点对最短路径

适用条件:
没有负环(可有负权重)

动态规划步骤:
1.分析最优解的结构
(最短路径结构)
根据最短路径的最优子结构性质,有d(i,j) = d(i,k) + w(k,j)

2.递归定义最优解的值
(所有节点对最短路径问题的递归解)
首先要获取递归求解的对象表达式

这里采取最短路径的边数作为递归的计数对象,因为图中没有负环,所以对于边数大于n-1的最短路径计算也就没有意义(因为n-1条边已经能够将所有节点连接,一旦大于n-1条边则会形成环,并且所有的环都是正权重,所以会使结果变大),因此我们递归时控制边数m使其m>0 && m < n。m=1时,即为输入的邻接矩阵M。

在递归时,我们计算边数为m的最短路径时,将m-1的最短路径与d(i,j) = d(i,k) + w(k,j)进行比较,取最小值。因为k=j时,即为m-1的最短路径,因此问题简化为循环遍历k求d(i,j) = d(i,k) + w(k,j)的最小值。如下图公式:
技术分享
3.自底向上计算最优解的值
(自底向上计算最短路径权重)
因为含有m条边的距离是在m-1条边的基础上计算出来的,所以从含有一条边开始,自底向上求值,按照第二步所述编写代码,详见具体代码。

4.从计算出的最优解的值上构建最优解
按照正常步骤,按部就班的每次递归m++;这样最终的时间复杂度为O(n^4)。但我们要的是最终m=n-1的结果,而对中间结果不感兴趣,因此我们可以使m每次增加一倍。m>n-1时的结果与n-1时的结果相同,最终的时间复杂度被压缩到O(n^3 lgn)。(详见具体代码)

具体代码:

import java.util.Scanner;
/**
 * 
 * @author Founder
 *
 */
public class Main{
    private static final int INFINITE = 1000000000;
    public static void main(String[] args){
        int[][] matrix = initialize();
        print(getPairsPath(matrix));
    }

    public static int[][] initialize(){
        Scanner input = new Scanner(System.in);
        int n = input.nextInt();
        int[][] data = new int[n][n];
        for(int i = 0; i < n; ++i)
            for(int j = 0; j < n; ++j)
                data[i][j] = input.nextInt();
        return data;
    }

    public static int[][] extendPath(int[][] matrix){
        int[][] newMatrix = new int[matrix.length][matrix.length];
        for(int i = 0; i < matrix.length; ++i)
            for(int j = 0; j < matrix.length; ++j){
                newMatrix[i][j] = INFINITE;
                for(int k = 0; k < matrix.length; ++k)
                    if(matrix[i][k] + matrix[k][j] < newMatrix[i][j]){
                        newMatrix[i][j] = matrix[i][k] + matrix[k][j];
                    }
            }
        return newMatrix;
    }

    public static int[][] getPairsPath(int[][] matrix){
        int m = matrix.length;
        int i = 1;//i代表路径边数
        while(i < m - 1){
            matrix = extendPath(matrix);
            m *= 2;
        }
        return matrix;
    }

    public static void print(int[][] matrix){

        for(int i = 0; i < matrix.length; ++i)
            for(int j = 0; j < matrix.length; ++j){
                if(matrix[i][j] != INFINITE && i != j){
                    System.out.println("From " + i + " to " + j + " the cost is:" + matrix[i][j]);
                }
            }
    }

}

测试用例:
技术分享

输入:

5
0 3 8 1000000000 -4
1000000000 0 1000000000 1 7
1000000000 4 0 1000000000 1000000000
2 1000000000 -5 0 1000000000
1000000000 1000000000 1000000000 6 0

输出:

From 0 to 1 the cost is:1
From 0 to 2 the cost is:-3
From 0 to 3 the cost is:2
From 0 to 4 the cost is:-4
From 1 to 0 the cost is:3
From 1 to 2 the cost is:-4
From 1 to 3 the cost is:1
From 1 to 4 the cost is:-1
From 2 to 0 the cost is:7
From 2 to 1 the cost is:4
From 2 to 3 the cost is:5
From 2 to 4 the cost is:3
From 3 to 0 the cost is:2
From 3 to 1 the cost is:-1
From 3 to 2 the cost is:-5
From 3 to 4 the cost is:-2
From 4 to 0 the cost is:8
From 4 to 1 the cost is:5
From 4 to 2 the cost is:1
From 4 to 3 the cost is:6

Floyd-Warshall 算法

适用条件:
没有负环(可有负权重)

原理讲解:
warshall算法非常伟大,它的时间复杂度可以达到O(V^3),而warshall算法的实现,也是基于以下现象的观察:
对于中间节点取自(1,2,3,…,k)的最短路径,它是由中间节点取自(1,2,3,…,k-1)的最短路径构成的。
基于这个观察,我们可以有以下递归式:
技术分享

算法步骤:
1.初始化存储权重的矩阵和前驱结点矩阵
2.自底向上进行动态规划,k从0到matrix.length,判断if(matrix[i][k] + matrix[k][j] < matrix[i][j])来创建新的数据矩阵和前驱矩阵
3.根据遍历完的结果,输出答案。

具体代码:

import java.util.Scanner;

public class Main{
    private static final int INFINITE = 1000000000;
    public static void main(String[] args){
        int[][] matrix = initialize();
        int[][] parent = new int[matrix.length][matrix.length];
        for(int i = 0; i < parent.length; ++i)
            for(int j = 0; j < parent.length; ++j){
                if(i == j)
                    parent[i][j] = 0;
                else{
                    if(matrix[i][j] != INFINITE)
                        parent[i][j] = i;
                    else
                        parent[i][j] = -1;
                }   
            }
        printPath(floyd_warshall(matrix,parent),parent);
    }

    public static int[][] initialize(){
        Scanner input = new Scanner(System.in);
        int n = input.nextInt();
        int[][] data = new int[n][n];
        for(int i = 0; i < n; ++i)
            for(int j = 0; j < n; ++j)
                data[i][j] = input.nextInt();
        return data;
    }

    public static int[][] floyd_warshall(int[][] matrix,int[][] parent){

        for(int k = 0; k < matrix.length; ++k){
            int[][] newMatrix = new int[matrix.length][matrix.length];
            int[][] newParent = new int[parent.length][parent.length];
            for(int i = 0; i < matrix.length; ++i)
                for(int j = 0; j < matrix.length; ++j){
                    if(matrix[i][k] + matrix[k][j] < matrix[i][j]){
                        newMatrix[i][j] = matrix[i][k] + matrix[k][j];
                        newParent[i][j] = parent[k][j];
                    }else{
                        newMatrix[i][j] = matrix[i][j];
                        newParent[i][j] = parent[i][j];
                    }

                }
            matrix = newMatrix;
            for(int m = 0; m < parent.length; ++m)
                for(int n = 0; n < parent.length; ++n)
                    parent[m][n] = newParent[m][n];
        }
        return matrix;
    }

    public static void printPath(int[][] matrix,int[][] parent){
        for(int i = 0; i < matrix.length; ++i)
            for(int j = 0; j < matrix.length; ++j){
                if(matrix[i][j] != INFINITE && i != j){
                    System.out.print("From " + i + " to " + j + " the cost is:" + matrix[i][j]
                            + "\nThe path is: " + j +" ");
                    int temp = j;
                    while((temp = parent[i][temp]) != i)
                        System.out.print("<< " + temp + " ");
                    System.out.println("<< " + i + " ");
                }
            }
    }
}

测试用例:
技术分享

输入:

5
0 3 8 1000000000 -4
1000000000 0 1000000000 1 7
1000000000 4 0 1000000000 1000000000
2 1000000000 -5 0 1000000000
1000000000 1000000000 1000000000 6 0

输出:

From 0 to 1 the cost is:1
The path is: 1 << 2 << 3 << 4 << 0 
From 0 to 2 the cost is:-3
The path is: 2 << 3 << 4 << 0 
From 0 to 3 the cost is:2
The path is: 3 << 4 << 0 
From 0 to 4 the cost is:-4
The path is: 4 << 0 
From 1 to 0 the cost is:3
The path is: 0 << 3 << 1 
From 1 to 2 the cost is:-4
The path is: 2 << 3 << 1 
From 1 to 3 the cost is:1
The path is: 3 << 1 
From 1 to 4 the cost is:-1
The path is: 4 << 0 << 3 << 1 
From 2 to 0 the cost is:7
The path is: 0 << 3 << 1 << 2 
From 2 to 1 the cost is:4
The path is: 1 << 2 
From 2 to 3 the cost is:5
The path is: 3 << 1 << 2 
From 2 to 4 the cost is:3
The path is: 4 << 0 << 3 << 1 << 2 
From 3 to 0 the cost is:2
The path is: 0 << 3 
From 3 to 1 the cost is:-1
The path is: 1 << 2 << 3 
From 3 to 2 the cost is:-5
The path is: 2 << 3 
From 3 to 4 the cost is:-2
The path is: 4 << 0 << 3 
From 4 to 0 the cost is:8
The path is: 0 << 3 << 4 
From 4 to 1 the cost is:5
The path is: 1 << 2 << 3 << 4 
From 4 to 2 the cost is:1
The path is: 2 << 3 << 4 
From 4 to 3 the cost is:6
The path is: 3 << 4 

拓展
根据warshall算法求闭包:
只需将输入的矩阵变为:相连为1,不相连为0
判断条件:matrix[i][k] + matrix[k][j] < matrix[i][j] 变为:matrix[i][j] |(matrix[i][k] & matrix[k][j])
即可求出。
其中k代表路径有<=k+1条边时的相连情况。

用于稀疏图的Johnson算法

先判断是否存在line的权重为负
如果不存在 直接进行后面的步骤
否则{
在图G中添加一个额外的节点s,和s到其他各个节点的line,权重为0,形成新图G’
计算s到其他各个节点的最短距离(使用bellman-ford算法),使之为各个节点的权重
计算G’中各个line的新的权重,weight+u.length-v.length
将新的权重赋予到图G中
}
建立一个|V|*|V|的新的矩阵用于记录数据
对图G中的每个节点调用Dijkstra算法并记录

算法效率:O(V^2 lgV + VE)

适用条件:
没有负环(可有负权重)

具体代码:

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Scanner;
/**
 * 
 * @author FounderWatts
 * 输入方式:邻接链表
 */
public class Main {
    public static final int INFINITE = 2000000000;
    public static void main(String[] args){
        Graph G = new Graph();
        if(initialize(G)){
            Graph newG = new Graph(G);
            fixNewGraph(newG);
            if(!bellman_ford(newG)){
                System.out.println("图中含有负数环路,节点间不存在最短路径。");
                return;
            }
            setNodesNewWeight(G,newG);
        }
        Graph[] Gs = new Graph[G.getNodes().size()];
        for(int i = 0; i < G.getNodes().size(); ++i){
            Gs[i] = new Graph(G);
            Gs[i].getNodes().get(i).setLength(0);
            dijkstra(Gs[i]);
        }
        print(Gs);
    }

    public static boolean initialize(Graph G){
        boolean haveMinus = false;
        Scanner input = new Scanner(System.in);
        int n = input.nextInt();
        ArrayList<Node> nodes = G.getNodes();
        ArrayList<Line> lines = G.getLines();
        input.nextLine();

        for(int i = 0; i < n; ++i){
            Node node = new Node(i);
            String str = input.nextLine();
            if(!str.equals("")){
                String[] strs = str.split(" ");
                for(int j = 0; j < strs.length; ++j){
                    int endNo = Integer.parseInt(strs[j]);
                    int weight = Integer.parseInt(strs[++j]);
                    if(weight < 0) haveMinus = true;
                    Line line = new Line(i,endNo,weight);
                    lines.add(line);
                    node.addLine(line);
                }
            }
            nodes.add(node);
        }
        return haveMinus;
    }

    public static void fixNewGraph(Graph newG){
        ArrayList<Node> nodes = newG.getNodes();
        ArrayList<Line> lines = newG.getLines();
        Node s = new Node(nodes.size());
        s.setLength(0);
        for(int i = 0; i < nodes.size(); ++i){
            Line line = new Line(nodes.size(),i,0);
            s.addLine(line);
            lines.add(line);
        }
        nodes.add(s);
    }

    public static void relax(Graph G,Line line){
        Node u = G.getNodes().get(line.getStartNodeNo());
        Node v = G.getNodes().get(line.getEndNodeNo());
        if(u.getLength() + line.getWeight() < v.getLength()){
            v.setLength(u.getLength() + line.getWeight());
            v.setParent(u);
        }
    }

    public static boolean bellman_ford(Graph G){
        for(int i = 0; i < G.getNodes().size() - 1; ++i)
            for(Line line:G.getLines())
                relax(G,line);
        for(Line line:G.getLines()){
            Node u = G.getNodes().get(line.getStartNodeNo());
            Node v = G.getNodes().get(line.getEndNodeNo());
            if(u.getLength() + line.getWeight() < v.getLength())
                return false;
        }
        return true;
    }

    public static void setNodesNewWeight(Graph G,Graph newG){
        for(Line line:G.getLines()){
            int startWeight = newG.getNodes().get(line.getStartNodeNo()).getLength();
            int endWeight = newG.getNodes().get(line.getEndNodeNo()).getLength();
            G.getNodes().get(line.getStartNodeNo()).setWeight(startWeight);
            G.getNodes().get(line.getEndNodeNo()).setWeight(endWeight);
            line.setWeight(line.getWeight() + startWeight - endWeight);
        }

    }

    public static void dijkstra(Graph G){
        ArrayList<Node> restNode = new ArrayList<>(G.getNodes());
        while(!restNode.isEmpty())
            for(Line line:getLeastNode(restNode).getLinkLines())
                relax(G, line);
    }

    public static Node getLeastNode(ArrayList<Node> restNode){
        Node node = restNode.get(0);
        for(Node item:restNode)
            if(item.getLength() < node.getLength()){
                node = item;
            }
        restNode.remove(node);
        return node;
    }

    public static void print(Graph[] Gs){
        for(int i = 0; i < Gs.length; ++i){
            ArrayList<Node> nodes = Gs[i].getNodes();
            for(int j = 0; j < nodes.size(); ++j){
                if(i != j && nodes.get(j).getLength() != INFINITE){
                    System.out.print("From " + i + " to " + j + " the cost is:" + (nodes.get(j).getLength() - nodes.get(i).getWeight() + nodes.get(j).getWeight())
                            + "\nThe path is: " + j +" ");
                    Node parent = nodes.get(j);
                    while((parent = parent.getParent()) != null)
                        System.out.print("<< " + parent.getNo() + " ");
                    System.out.println();
                }
            }
        }
    }

}

class Line{
    private int startNodeNo;
    private int endNodeNo;
    private int weight;
    public int getStartNodeNo() {
        return startNodeNo;
    }
    public void setStartNodeNo(int startNodeNo) {
        this.startNodeNo = startNodeNo;
    }
    public int getEndNodeNo() {
        return endNodeNo;
    }
    public void setEndNodeNo(int endNodeNo) {
        this.endNodeNo = endNodeNo;
    }
    public int getWeight() {
        return weight;
    }
    public void setWeight(int weight) {
        this.weight = weight;
    }
    public Line(int startNodeNo, int endNodeNo, int weight) {
        super();
        this.startNodeNo = startNodeNo;
        this.endNodeNo = endNodeNo;
        this.weight = weight;
    }

}

class Node{
    private int no;
    private int length = Main.INFINITE;
    private int weight = 0;
    private Node parent = null;
    private LinkedList<Line> linkLines;
    public int getNo() {
        return no;
    }
    public void setNo(int no) {
        this.no = no;
    }
    public int getLength() {
        return length;
    }
    public void setLength(int length) {
        this.length = length;
    }
    public int getWeight() {
        return weight;
    }
    public void setWeight(int weight) {
        this.weight = weight;
    }
    public Node getParent() {
        return parent;
    }
    public void setParent(Node parent) {
        this.parent = parent;
    }
    public LinkedList<Line> getLinkLines() {
        return linkLines;
    }
    public void setLinkLines(LinkedList<Line> linkLines) {
        this.linkLines = linkLines;
    }
    public void addLine(Line line){
        linkLines.add(line);
    }
    public Node(int no) {
        super();
        this.no = no;
        linkLines = new LinkedList<>();
    }
    public Node(Node node) {
        super();
        this.no = node.no;
        length = node.getLength();
        parent = node.getParent();
        linkLines = node.getLinkLines();    
        weight = node.getWeight();
    }

}

class Graph{
    private ArrayList<Node> nodes;
    private ArrayList<Line> lines;
    public ArrayList<Node> getNodes() {
        return nodes;
    }
    public void setNodes(ArrayList<Node> nodes) {
        this.nodes = nodes;
    }
    public ArrayList<Line> getLines() {
        return lines;
    }
    public void setLines(ArrayList<Line> lines) {
        this.lines = lines;
    }
    public Graph() {
        super();
        nodes = new ArrayList<>();
        lines = new ArrayList<>();
    }
    public Graph(Graph graph) {
        lines = new ArrayList<>(graph.getLines());
        nodes = new ArrayList<>();
        for(Node node:graph.getNodes())
            nodes.add(new Node(node));
    }

}

测试用例:
技术分享

输入:

5
1 3 2 8 4 -4
3 1 4 7
1 4
0 2 2 -5
3 6

输出:

From 0 to 1 the cost is:1
The path is: 1 << 2 << 3 << 4 << 0 
From 0 to 2 the cost is:-3
The path is: 2 << 3 << 4 << 0 
From 0 to 3 the cost is:2
The path is: 3 << 4 << 0 
From 0 to 4 the cost is:-4
The path is: 4 << 0 
From 1 to 0 the cost is:3
The path is: 0 << 3 << 1 
From 1 to 2 the cost is:-4
The path is: 2 << 3 << 1 
From 1 to 3 the cost is:1
The path is: 3 << 1 
From 1 to 4 the cost is:-1
The path is: 4 << 0 << 3 << 1 
From 2 to 0 the cost is:7
The path is: 0 << 3 << 1 << 2 
From 2 to 1 the cost is:4
The path is: 1 << 2 
From 2 to 3 the cost is:5
The path is: 3 << 1 << 2 
From 2 to 4 the cost is:3
The path is: 4 << 0 << 3 << 1 << 2 
From 3 to 0 the cost is:2
The path is: 0 << 3 
From 3 to 1 the cost is:-1
The path is: 1 << 2 << 3 
From 3 to 2 the cost is:-5
The path is: 2 << 3 
From 3 to 4 the cost is:-2
The path is: 4 << 0 << 3 
From 4 to 0 the cost is:8
The path is: 0 << 3 << 4 
From 4 to 1 the cost is:5
The path is: 1 << 2 << 3 << 4 
From 4 to 2 the cost is:1
The path is: 2 << 3 << 4 
From 4 to 3 the cost is:6
The path is: 3 << 4 

所有节点对最短路径

标签:

原文地址:http://blog.csdn.net/qq_23014515/article/details/51443128

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!