标签:
Let $0<r_1\le r_2\le\cdots$ be a real sequence satisfying $\lim\limits_{n\to \infty}r_n=+\infty$. The convergence exponent of the sequence is defined as follows.
$$\lambda=\inf\left\{\alpha: \sum_{n=1}^\infty \frac{1}{r_n^\alpha}<\infty\right\}.$$
The convergence exponent has the following characterization:
$$\lambda=\limsup\limits_{n\to \infty}\frac{\log n}{\log r_n}.$$
Proof. Let $\beta:=\limsup\limits_{n\to \infty}\frac{\log n}{\log r_n}$ and $\alpha>\beta.$ Then there is an $\varepsilon>0$ such that $\alpha>(1+\varepsilon)\beta$. It follows from the definition of limsup there is an $N$ such that
$$\frac{\log n}{\log r_n}<\frac{\alpha}{1+\varepsilon}$$
for all $n>N$. Then , for all $n>N$, we have
$$\frac{1}{r_n^\alpha}<\frac{1}{n^{1+\varepsilon}}.$$
That is, $\sum r_n^{-\alpha}<\infty$ for all $\alpha>\beta$. Therefore, $\lambda\le \beta.$
标签:
原文地址:http://www.cnblogs.com/jinjun/p/5505473.html