码迷,mamicode.com
首页 > 其他好文 > 详细

Probabilistic SVM 与 Kernel Logistic Regression(KLR)

时间:2016-05-18 16:09:12      阅读:266      评论:0      收藏:0      [点我收藏+]

标签:

本篇讲的是SVM与logistic regression的关系。

 

(一) SVM算法概论

首先我们从头梳理一下SVM(一般情况下,SVM指的是soft-margin SVM)这个算法。

这个算法要实现的最优化目标是什么?我们知道这个目标必然与error measurement有关。

那么,在SVM中,何如衡量error的?也即:在SVM中ε具体代表着什么?

技术分享

SVM的目标是最小化上式。我们用技术分享来衡量error。这个式子是不是有点眼熟?我们在regularzation一篇中,最小化的目标也是如此形式。但是两者的思路不同:对于regularization,我们的目标是最小化error,但是呢,我们也希望对|w|的长度有限制;

对于SVM,我们的目标是最小化|w|,但是呢,我们也希望对error有所限制。

具体哪一方面占的权重更大,对于regularization来说,可以用λ来调节;对于SVM来说,可以用C来调节。

总体来说,殊途同归,但是使用SVM方法,即使是如上的nonlinear error衡量方式,我们也可以用QP工具来解决;第二,我们可以使用kernel function工具

 

 

具体来说其误差衡量方式与0/1 error相比:

技术分享

我们发现:这种误差衡量方式也是0/1误差的一种upper bound。之前我们在哪里见识过类似的场景?squared error 和cross-entropy error。

技术分享

我们可以看到:SVM的错误衡量方式与cross-entropy error的值相似。所以我们说 SVM ≈ L2-regularized logistic regression。

 

(二)probabilistic SVM

如何融合SVM和logistic regression?

我也不知道为什么要将SVM与logistic regression联系起来。logistic regression与SVM相比,有什么优点?是极大似然?直接使用SVM不好吗?

技术分享

这两种方法都不好,没有吸收两种方法的好处。

技术分享

技术分享

 

(三)kernel logistic regression

假设我们融合logistic regression与SVM,主要是要在logistic regression中使用SVM的kernel function工具。那么,现在的问题是:能不能直接做kernel logistic regression?

首先明白一点:要想使用kernel trick,必然有:w可以由n个数据来表示。也即:optimal w can be represented by zn

什么使用这一情况会得到满足?

技术分享

由此,我们可以做kernel logistic regression:

技术分享

Probabilistic SVM 与 Kernel Logistic Regression(KLR)

标签:

原文地址:http://www.cnblogs.com/wangyanphp/p/5505497.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!