标签:
ReentrantReadWriteLock基于AQS实现读写锁的同步:
1.利用共享模式实现读锁,独占模式实现写锁;
2.支持公平和非公平,非公平的情况下可能会出现读锁阻塞写锁的场景;
3.写锁阻塞写锁和读锁,读锁阻塞写锁;
4.写锁可以降级为读锁,读锁不能升级为写锁,只能先release再lock;
5.写锁支持condition条件;
6.读写锁都支持超时/中断lock;
7.适合读多写少的场景。
实现ReadWriteLock接口,用于返回读/写锁:
<span style="font-size:18px;">public interface ReadWriteLock { /** * Returns the lock used for reading. */ Lock readLock(); /** * Returns the lock used for writing. */ Lock writeLock(); }</span>
看下内部类的AQS实现:
<span style="font-size:18px;">abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 6317671515068378041L; /* AQS中的int型state字段被拆为2部分,高16位表示共享读锁的持有次数(每个线程的重入次数,由HoldCounter保存),低16位表示独占写锁的重入次数 */ static final int SHARED_SHIFT = 16; //偏移单位 static final int SHARED_UNIT = (1 << SHARED_SHIFT); //00000000 00000001 00000000 00000000 state拆为2部分,所以读锁的持有次数计算都需要这个值做比较 static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; //00000000 00000000 11111111 11111111 读写锁的最大持有次数65535,2的16次方-1 static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; //00000000 00000000 11111111 11111111 /** 读锁高16位无符号偏移16位,相当于计算读锁的持有持有次数 */ static int sharedCount(int c) { return c >>> SHARED_SHIFT; } /** 返回写锁的重入次数,state2种情况: 如果拥有读锁,肯定大于65535,就用到了高16位,做&操作的话就等于0,可以用state!=0加这个返回值!=0判断拥有读锁 如果是写锁的话,肯定是小于65535,用到了低16位,做&操作就返回写锁的重入次数*/ static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; } /** 定义类保存读锁每个线程重入次数 */ static final class HoldCounter { int count = 0; // 用id,而不是用thread保存,编译垃圾滞留 final long tid = Thread.currentThread().getId(); } /** ThreadLocal子类,持有HoldCounter*/ static final class ThreadLocalHoldCounter extends ThreadLocal<HoldCounter> { public HoldCounter initialValue() { return new HoldCounter(); } } /** 读锁的重入次数变量,在内部类Sync构造时初始化,在读锁release的重入减少到1时remove,然后-- */ private transient ThreadLocalHoldCounter readHolds; /** 缓存最后一个成功获取读锁的持有,javadoc解释是,下一个要release的就是最后一个成功获取的, 也是为了处理优化 */ private transient HoldCounter cachedHoldCounter; /** 为了处理优化,保存第一个进来的线程和重入次数 */ private transient Thread firstReader = null; private transient int firstReaderHoldCount; Sync() { readHolds = new ThreadLocalHoldCounter();//读锁的重入次数初始化 setState(getState()); // cas操作,加内存屏障,保证readHolds的可见性 } /* 读写锁Acquire时候判断是否需要阻塞,公平和不公平实现处理方式不一样 */ abstract boolean readerShouldBlock(); abstract boolean writerShouldBlock(); /* AQS独占api写锁的release */ protected final boolean tryRelease(int releases) { //判断是否当前线程 if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int nextc = getState() - releases; //写锁的重入次数判断 boolean free = exclusiveCount(nextc) == 0; if (free) setExclusiveOwnerThread(null); //写锁重入为0时true,设置独占线程null setState(nextc); return free; } /* AQS独占api写锁的acquire */ protected final boolean tryAcquire(int acquires) { /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. 如果读锁或写锁不为0,且占有线程不是当前线程,false * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) 持有次数大于最大65535,false * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. 否则,如果是重入的或者按照队列策略(应该是可以插队的情况下)容许,那就更新state值设置owner线程 */ Thread current = Thread.currentThread(); int c = getState(); int w = exclusiveCount(c); //上面说过2种情况:1.返回写锁的重入次数;2.返回0,可用于判断是否有读锁 if (c != 0) { //c!=0 表示锁被占用 // c!=0 and w==0表示用读锁,这样的话,读锁是阻塞写锁的返回false,挂起 // c!=0 and w!=0表示有写锁,就判断下是不是重入,不是false,挂起 if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w + exclusiveCount(acquires) > MAX_COUNT) //判断下是不是达到了最大重入次数 throw new Error("Maximum lock count exceeded"); // 到这里的话,那就当前线程重入了,那就设置state值,返回true,Acquire成功 setState(c + acquires); return true; } //到这里那就是c为0了,需要看看是不是需要挂起(由公平和和非公平子类实现) //非公平直接返回false,公平的话就检查hasQueuedPredecessors检查head的next是不是非当前线程 if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; //需要挂起或cas失败,那就挂起吧 setExclusiveOwnerThread(current); return true; } /*AQS共享api读锁release实现*/ protected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); if (firstReader == current) { //判断缓存的重入,如果只有一次,那就直接设置缓存线程null,否则递减 if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; } else { //从缓存的读锁重入变量里面取 HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; //递减重入次数 } for (;;) { //for循环loop设置读锁的holdCount减少 int c = getState(); int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers,释放读锁对其他读线程没有什么影响 // but it may allow waiting writers to proceed if // both read and write locks are now free. // 如果读锁和写锁都空闲,就可以容许其他写线程处理, // 但是如果读多写少的场景下,非公平模式,很可能读释放了,写线程也没机会 return nextc == 0; } } private IllegalMonitorStateException unmatchedUnlockException() { return new IllegalMonitorStateException( "attempt to unlock read lock, not locked by current thread"); } /*AQS共享api读锁Acquire实现*/ protected final int tryAcquireShared(int unused) { /* * Walkthrough: * 1. If write lock held by another thread, fail. 如果其他线程获取了写锁,false,也就是写锁阻塞了读锁 * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. 否则,当前线程获取了写锁,根据队列策略看是否要阻塞读锁,不阻塞那就setstate,更新读锁重入次数 * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. 如果第二步失败了那就fullTryAcquireShared */ Thread current = Thread.currentThread(); int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) //有写锁并且不是当前线程,挂起 return -1; int r = sharedCount(c); //读锁的holdCount if (!readerShouldBlock() && //公平非公平子类决定读锁是否阻塞 r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) //cas设置state,注意updae值加了65535,保证更新的值是高16位 { if (r == 0) { //读锁只有一个,直接缓存,不用放到readHolds里面 firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { //不为0,但是缓存的是当前线程,直接累加 firstReaderHoldCount++; } else { //其他情况,那就只能从缓存变量取值更新了 HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } //需要阻塞、读锁持有超过最大、cas失败那就for循环重试 return fullTryAcquireShared(current); } /** 完全Acquire判断处理cas失败或者读锁重入 */ final int fullTryAcquireShared(Thread current) { /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */ HoldCounter rh = null; for (;;) { int c = getState(); if (exclusiveCount(c) != 0) { if (getExclusiveOwnerThread() != current) //到这里的话,其他线程持有写锁 return -1; // else we hold the exclusive lock; blocking here // would cause deadlock. //否则当前线程持有写锁,阻塞在这里会造成死锁 } else if (readerShouldBlock()) { //写锁空闲,并且读锁需要阻塞 // Make sure we're not acquiring read lock reentrantly if (firstReader == current) { //如果是当前线程的话,即使需要队列策略决定需要阻塞也不阻塞,直接后面cas操作 // assert firstReaderHoldCount > 0; } else { if (rh == null) { rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) { rh = readHolds.get(); if (rh.count == 0) readHolds.remove(); } } //需要阻塞且count==0为非重入的话,那就阻塞 if (rh.count == 0) return -1; } } if (sharedCount(c) == MAX_COUNT) //读锁持有超过最大 throw new Error("Maximum lock count exceeded"); //下面的cas操作跟对应的处理和前面tryAcquireshard里面一样 if (compareAndSetState(c, c + SHARED_UNIT)) { if (sharedCount(c) == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { if (rh == null) rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; cachedHoldCounter = rh; // cache for release } return 1; } } } /** 写锁和tryAcquire相比少调用了writerShouldBlock.导致写锁的插队,不管你公平还是不公平了 */ final boolean tryWriteLock() { Thread current = Thread.currentThread(); int c = getState(); if (c != 0) { int w = exclusiveCount(c); if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w == MAX_COUNT) throw new Error("Maximum lock count exceeded"); } if (!compareAndSetState(c, c + 1)) return false; setExclusiveOwnerThread(current); return true; } /** 读锁比fullreaderShouldBlock少判断了readerShouldBlock.也是读锁的插队,不管公平还是不公平模式了 */ final boolean tryReadLock() { Thread current = Thread.currentThread(); for (;;) { int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return false; int r = sharedCount(c); if (r == MAX_COUNT) throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return true; } } } // 当前线程是否是独占线程 protected final boolean isHeldExclusively() { return getExclusiveOwnerThread() == Thread.currentThread(); } //写锁的condition final ConditionObject newCondition() { return new ConditionObject(); } // 获取独占线程 final Thread getOwner() { // Must read state before owner to ensure memory consistency return ((exclusiveCount(getState()) == 0) ? null : getExclusiveOwnerThread()); } //获取读锁持有次数 final int getReadLockCount() { return sharedCount(getState()); } //是否写锁持有 final boolean isWriteLocked() { return exclusiveCount(getState()) != 0; } //如果当前线程为独占线程,获取下重入次数,否则0 final int getWriteHoldCount() { return isHeldExclusively() ? exclusiveCount(getState()) : 0; } //获取当前线程的重入次数 final int getReadHoldCount() { if (getReadLockCount() == 0) return 0; Thread current = Thread.currentThread(); if (firstReader == current) return firstReaderHoldCount; HoldCounter rh = cachedHoldCounter; if (rh != null && rh.tid == current.getId()) return rh.count; int count = readHolds.get().count; if (count == 0) readHolds.remove(); return count; } /** 从stream重构实例 */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); readHolds = new ThreadLocalHoldCounter(); setState(0); // reset to unlocked state } //获取state值 final int getCount() { return getState(); } }</span>看下公平和非公平策略:
<span style="font-size:18px;">static final class NonfairSync extends Sync { private static final long serialVersionUID = -8159625535654395037L; final boolean writerShouldBlock() { return false; // 非公平的写,可以插队 } final boolean readerShouldBlock() { /* 就是检查队列的head的next是不是独占节点 */ return apparentlyFirstQueuedIsExclusive(); } } final boolean apparentlyFirstQueuedIsExclusive() { Node h, s; return (h = head) != null && (s = h.next) != null && !s.isShared() && s.thread != null; } //公平的就要排队 static final class FairSync extends Sync { private static final long serialVersionUID = -2274990926593161451L; final boolean writerShouldBlock() { return hasQueuedPredecessors(); } final boolean readerShouldBlock() { return hasQueuedPredecessors(); } } AQS: public final boolean hasQueuedPredecessors() { // The correctness of this depends on head being initialized // before tail and on head.next being accurate if the current // thread is first in queue. Node t = tail; // Read fields in reverse initialization order Node h = head; Node s; return h != t && ((s = h.next) == null || s.thread != Thread.currentThread()); }</span>
要记住AQS的int型state拆为2部分:高16位为读锁持有次数(线程的重入由其他变量持有),低16位为写锁的重入次数,共享读,独占写,读锁阻塞写锁,写锁阻塞写锁和读锁,写锁可将级为读锁,读锁不能升级为写锁。最后总结下读写锁的Acquire和release判断大致流程:
写锁Acquire:
1.获取当前线程,state值和写锁重入次数;
2.如果state不为0,说明锁被占用,可能写锁也可能读锁,需要继续判断;
3.在state不为0情况下,如果写锁的重入为0,说明读锁被占用,因为读锁阻塞写锁,所有返回false;
4.在state不为0情况下,如果写锁的重入不为0,说明写锁被占用,因为可重入,所以判断是否为当前线程,不是false;
5.在3、4判断没问题,那就是当前线程写锁重入,就判断下写锁重入后是否大于最大限制,如达到,异常;
6.如5判断没达到最大线程,那就设置写锁重入次数,返回true,获取成功;
7.如果2判断锁没有被持有,基于队列策略判断写是否需要阻塞(非公平时,写不需要阻塞,公平时判断head->next是否null或非当前线程),需要阻塞返回false,挂起,不需要阻塞就cas操作设置state值;
8.如果7需要阻塞或cas设置失败,返回false,挂起;
9.如果7不需要阻塞且cas成功,设置独占线程,返回true,Acquire成功。
写锁release:
1.首先判断是否当前线程持有,否就异常;
2.计算state释放后的值 ;
3.判断释放后的写锁重入是否为0;
4.如果3为true,写锁重入为0那就设置独占线程为null;
5.最后设置AQS的state值,返回3的判断结果。
读锁Acquire:
1.获取当前线程和state锁持有次数
2.线程持有的写锁可降级为读锁,判断有没有其他线程持有写锁,如有,因为写锁阻塞读锁,那就挂起当前线程;
3.如2没有其他线程持有写锁,说明要不写锁没被占用,要不当前线程持有,那就继续,获取读锁的持有;
4.判断3个条件:
4.1)读释放不需要挂起;非公平时判断是否存在head->next为读线程,公平时判断head->next是否null或非当前线程;
4.2)读锁持有小于最大;
4.3)cas设置读锁持有成功
5.如果4的判断都没有问题,继续判断读锁持有是否为0:
5.1)为0表示首次持有读锁,设置2个首次变量缓存首次持有读线程和首次持有读线程的重入次数,这样处理,如果只有一个读的话,以后就不用去查询缓存;
5.2)如果读锁不为0,说明有线程持有读锁,判断当前线程是否是之前缓存的首次持有读线程,如果是,累加缓存的首次持有读线程的重入次数;
5.3)如果上面2个都不满足,那就从缓存的持有变量取当前线程的持有,然后累加重入次数,Acquire成功
6.如4的条件不满足,那就for循环处理当前线程,处理的流程大致同2、3、4、5:
6.1)先判断是否有写锁,如有继续判断是否其他线程持有,如果其他线程持有,那就挂起;
6.2)如果没有线程持有写锁,那就判断读是否要阻塞,如果需要阻塞,继续判断:
6.2.1)已经获取读锁的重入,即使需要阻塞也不管,转到6.3处理,Acquire成功;
6.2.1)如果是其他线程的首次请求,加上上面又判断需要阻塞了,那就Acquire失败,阻塞;
6.3)上面判断Acquire没问题,判断读的持有是否达到最大,最大那就异常,没有下面处理下一些缓存变量,同5的处理,Acquire成功。
读锁release:
1.取当前线程;
2.判断是否已经持有读锁了:
1)如果是,判断重入次数,为1就直接读锁为null,否则递减重入次数;
2)如果不是,那就从缓存的持有里面取当前线程的重入,如果重入小于等于1,需要从持有缓存remove当前线程,这里有个小于等于0的判断,没搞懂什么场景出现,最后递减;
3.for循环设置读锁的持有次数,返回持有次数跟0的比较值。
终于看完AQS部分了,人生不死,学习不止!
参考:
http://ifeve.com/juc-reentrantreadwritelock/#more-9724
http://brokendreams.iteye.com/blog/2250866
JUC源码分析13-locks-ReentrantReadWriteLock
标签:
原文地址:http://blog.csdn.net/xiaoxufox/article/details/51436048