标签:
最近比较闲,想做一个判断是否是美女的算法
从网上搜集了一些图片,首先要提取这些图片中的人脸并保存作为训练集,可以参考文章:
http://blog.csdn.net/qq_15947787/article/details/51393030
下面是完整的代码
//opencv2.4.9 + vs2012 + win7 x64
#include <opencv2/opencv.hpp>
#include <iostream>
#include <stdio.h>
#include <windows.h>
using namespace std;
using namespace cv;
/** Function Headers */
void detectAndCut( Mat img ,string dir ,string filename );
void AllImagePro( string src, string dst, const int number );
char* WcharToChar(const wchar_t* wp);
wchar_t* CharToWchar(const char* c);
wchar_t* StringToWchar(const string& s);
string getstring ( const int n );
CascadeClassifier face_cascade;
String face_cascade_name = "haarcascade_frontalface_alt.xml";
//主函数
int main()
{
const int sample_mun_perclass = 12;//训练每类图片数量
const int class_mun = 2;//训练类数 一类是美女,一类是丑女 ^-^
const int image_cols = 30;
const int image_rows = 30;
string fileReadName,fileReadPath;
float trainingData[class_mun*sample_mun_perclass][image_rows*image_cols] = {{0}};//每一行一个训练样本
float labels[class_mun*sample_mun_perclass][class_mun]={{0}};//训练样本标签
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; };
AllImagePro( "0", "0cut" ,sample_mun_perclass);
AllImagePro( "1", "1cut" ,sample_mun_perclass);
cout<<"cut……OK!"<<endl;
for(int i=0;i<class_mun;++i)//不同类
{
//读取每个类文件夹下所有图像
int j = 0;//每一类读取图像个数计数
fileReadPath = getstring(i) + "cut/" + "*.*";
cout<<"文件夹"<<i<<endl;
HANDLE hFile;
LPCTSTR lpFileName = StringToWchar(fileReadPath);//指定搜索目录和文件类型,如搜索d盘的音频文件可以是"D:\\*.mp3"
WIN32_FIND_DATA pNextInfo; //搜索得到的文件信息将储存在pNextInfo中;
hFile = FindFirstFile(lpFileName,&pNextInfo);//请注意是 &pNextInfo , 不是 pNextInfo;
if(hFile == INVALID_HANDLE_VALUE)
{
exit(-1);//搜索失败
}
//do-while循环读取
do
{
if(pNextInfo.cFileName[0] == ‘.‘)//过滤.和..
continue;
//wcout<<pNextInfo.cFileName<<endl;
j++;
printf("%s\n",WcharToChar(pNextInfo.cFileName));
//对读入的图片进行处理
Mat srcImage = imread( getstring(i) + "/" + WcharToChar(pNextInfo.cFileName),CV_LOAD_IMAGE_GRAYSCALE);
Mat trainImage;
resize(srcImage,trainImage,Size(image_cols,image_rows),(0,0),(0,0),CV_INTER_AREA);//使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出现
// threshold(trainImage,trainImage,0,255,CV_THRESH_BINARY|CV_THRESH_OTSU);
Canny(trainImage ,trainImage ,150,100,3,false);
for(int k = 0; k<image_rows*image_cols; ++k)
{
trainingData[i*sample_mun_perclass+(j-1)][k] = (float)trainImage.data[k];
//trainingData[i*sample_mun_perclass+(j-1)][k] = (float)trainImage.at<unsigned char>((int)k/8,(int)k%8);//(float)train_image.data[k];
//cout<<trainingData[i*sample_mun_perclass+(j-1)][k] <<" "<< (float)trainImage.at<unsigned char>(k/8,k%8)<<endl;
}
} while (FindNextFile(hFile,&pNextInfo) );
}
// Set up training data Mat
Mat trainingDataMat(class_mun*sample_mun_perclass, image_rows*image_cols, CV_32FC1, trainingData);
//cout<<"trainingDataMat:"<<endl;
//cout<<trainingDataMat<<endl;
cout<<"trainingDataMat——OK!"<<endl;
// Set up label data
for(int i=0;i<=class_mun-1;++i)
{
for(int j=0;j<=sample_mun_perclass-1;++j)
{
for(int k = 0;k<class_mun;++k)
{
if(k==i)
labels[i*sample_mun_perclass + j][k] = 1;
else labels[i*sample_mun_perclass + j][k] = 0;
}
}
}
// Set up label data
Mat labelsMat(class_mun*sample_mun_perclass, class_mun, CV_32FC1,labels);
cout<<"labelsMat:"<<endl;
cout<<labelsMat<<endl;
cout<<"labelsMat——OK!"<<endl;
//训练代码
cout<<"training start...."<<endl;
CvANN_MLP bp;
// Set up BPNetwork‘s parameters
CvANN_MLP_TrainParams params;
params.train_method=CvANN_MLP_TrainParams::BACKPROP;
params.bp_dw_scale=0.001;
params.bp_moment_scale=0.1;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,10000,0.0001); //设置结束条件
//params.train_method=CvANN_MLP_TrainParams::RPROP;
//params.rp_dw0 = 0.1;
//params.rp_dw_plus = 1.2;
//params.rp_dw_minus = 0.5;
//params.rp_dw_min = FLT_EPSILON;
//params.rp_dw_max = 50.;
//Setup the BPNetwork
Mat layerSizes=(Mat_<int>(1,4) << image_rows*image_cols,int(image_rows*image_cols/2),int(image_rows*image_cols/2),class_mun);
bp.create(layerSizes,CvANN_MLP::SIGMOID_SYM,1.0,1.0);//CvANN_MLP::SIGMOID_SYM
//CvANN_MLP::GAUSSIAN
//CvANN_MLP::IDENTITY
cout<<"training...."<<endl;
bp.train(trainingDataMat, labelsMat, Mat(),Mat(), params);
bp.save("bpcharModel.xml"); //save classifier
cout<<"training finish...bpModel1.xml saved "<<endl;
//测试神经网络
cout<<"测试:"<<endl;
Mat test_image = imread("25.jpg",CV_LOAD_IMAGE_GRAYSCALE);
Mat test_temp;
resize(test_image,test_temp,Size(image_cols,image_rows),(0,0),(0,0),CV_INTER_AREA);//使用象素关系重采样。当图像缩小时候,该方法可以避免波纹出现
//threshold(test_temp,test_temp,0,255,CV_THRESH_BINARY|CV_THRESH_OTSU);
Canny(test_temp ,test_temp ,150,100,3,false);
Mat_<float>sampleMat(1,image_rows*image_cols);
for(int i = 0; i<image_rows*image_cols; ++i)
{
sampleMat.at<float>(0,i) = (float)test_temp.data[i];
// sampleMat.at<float>(0,i) = (float)test_temp.at<uchar>(i/8,i%8); //(float)resizeImage.data[k]
}
Mat responseMat;
bp.predict(sampleMat,responseMat);
float* p=responseMat.ptr<float>(0);
float max= -1,min =0;
int index = 0;
for(int k=0;k<class_mun;++k)
{
cout<<(float)(*(p+k))<<" ";
if(k==class_mun-1)
cout<<endl;
if((float)(*(p+k))>max)
{
min = max;
max = (float)(*(p+k));
index = k;
}
else
{
if(min < (float)(*(p+k)))
min = (float)(*(p+k));
}
}
//对应上美、丑
string judge = "";
if (index==0)
judge = "美美的!";
if (index==1)
judge = "略丑啊!";
cout<<"识别结果:"<<judge<<endl<<"识别置信度:"<<(((max-min)*100) > 100 ? 100:((max-min)*100))<<endl;
/*Point maxLoc;
double maxVal = 0;
minMaxLoc(responseMat,NULL,&maxVal,NULL,&maxLoc);
cout<<"识别结果:"<<maxLoc.x<<" 置信度:"<<maxVal*100<<"%"<<endl;*/
imshow("test_image",test_image);
imshow("test_temp",test_temp);
waitKey(0);
return 0;
}
//读取目录src下min(number,所有图像)图像提取人脸并保存到srccut目录,
//参数:原图片目录src 剪切图片保存目录dst 读取最大数量number
void AllImagePro( string src, string dst, static int number )
{
int count=0;
string src1 = src;
string src1cut = dst;
HANDLE hFile;
LPCTSTR lpFileName = StringToWchar(src1+"/"+"*.*"); //指定搜索目录和文件类型,如搜索d盘的音频文件可以是"D:\\*.mp3"
WIN32_FIND_DATA pNextInfo; //搜索得到的文件信息将储存在pNextInfo中;
hFile = FindFirstFile(lpFileName,&pNextInfo);//请注意是 &pNextInfo , 不是 pNextInfo;
if(hFile == INVALID_HANDLE_VALUE)
{
//搜索失败
exit(-1);
}
cout<<"文件夹"<<src<<"找到的图片:"<<endl;
do
{
if(pNextInfo.cFileName[0] == ‘.‘)//过滤.和..
continue;
count++;
printf("%s\n",WcharToChar(pNextInfo.cFileName));
Mat img = imread( src1 + "/" + WcharToChar(pNextInfo.cFileName) , 1 );
detectAndCut( img ,src1cut ,WcharToChar(pNextInfo.cFileName) );
}while (FindNextFile(hFile,&pNextInfo) && count<number);//如果设置读入的图片数量,则以设置的为准,如果图片不够,则读取文件夹下所有图片
}
//人脸检测
//参数:待检测图像img 保存路径dir 保存文件名name
void detectAndCut( Mat img ,string dir, string filename)
{
std::vector<Rect> faces;
Mat img_gray;
cvtColor( img, img_gray, COLOR_BGR2GRAY );
equalizeHist( img_gray, img_gray );
//-- Detect faces
face_cascade.detectMultiScale( img_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
for( size_t i = 0; i < faces.size(); i++ )
{
Point rec( faces[i].x, faces[i].y );
Point rec2( faces[i].x + faces[i].width, faces[i].y + faces[i].height );
Mat roi_img = img( Range(faces[i].y,faces[i].y + faces[i].height), Range(faces[i].x,faces[i].x + faces[i].width) );
imwrite( dir+"/"+filename, roi_img );
}
}
char* WcharToChar(const wchar_t* wp)
{
char *m_char;
int len= WideCharToMultiByte(CP_ACP,0,wp,wcslen(wp),NULL,0,NULL,NULL);
m_char=new char[len+1];
WideCharToMultiByte(CP_ACP,0,wp,wcslen(wp),m_char,len,NULL,NULL);
m_char[len]=‘\0‘;
return m_char;
}
wchar_t* CharToWchar(const char* c)
{
wchar_t *m_wchar;
int len = MultiByteToWideChar(CP_ACP,0,c,strlen(c),NULL,0);
m_wchar=new wchar_t[len+1];
MultiByteToWideChar(CP_ACP,0,c,strlen(c),m_wchar,len);
m_wchar[len]=‘\0‘;
return m_wchar;
}
wchar_t* StringToWchar(const string& s)
{
const char* p=s.c_str();
return CharToWchar(p);
}
string getstring ( const int n )
{
std::stringstream newstr;
newstr<<n;
return newstr.str();
}
美女原图:
NOT美女原图:
进行人脸检测截取后:
美女训练集:
NOT美女训练集:
照片都是百度随便搜的……
测试结果:
识别正确率80%左右
主要原因:
1、面部提取的不是特别准确,感觉略大
2、训练集太少,因为只是为了玩玩,只有16张图做训练集,所以会一定程度上影响测试的准确性
3、图像中脸部有的倾斜太严重,妹子们拍照总喜欢歪着脸,……会影响结果
4、所有人脸测试时均标准化为30*30,略小
5、采用canny算子得到的边缘进行训练,忽略了气色等因素,脸白脸黑其实边缘都差不多
标签:
原文地址:http://blog.csdn.net/qq_15947787/article/details/51394912