码迷,mamicode.com
首页 > 其他好文 > 详细

SG函数模板(转)

时间:2016-05-18 21:54:10      阅读:209      评论:0      收藏:0      [点我收藏+]

标签:

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;

x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;

x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;

x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;

x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;

以此类推.....

   x         0  1  2  3  4  5  6  7  8....

sg[x]      0  1  0  1  2  3  2  0  1....

 

计算从1-n范围内的SG值。

f(存储可以走的步数,f[0]表示可以有多少种走法)

f[]需要从小到大排序

1.可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);

2.可选步数为任意步,SG(x) = x;

3.可选步数为一系列不连续的数,用GetSG()计算

模板1如下(SG打表):

技术分享
//f[]:可以取走的石子个数
//sg[]:0~n的SG函数值
//hash[]:mex{}
int f[N],sg[N],hash[N];     
void getSG(int n)
{
    int i,j;
    memset(sg,0,sizeof(sg));
    for(i=1;i<=n;i++)
    {
        memset(hash,0,sizeof(hash));
        for(j=1;f[j]<=i;j++)
            hash[sg[i-f[j]]]=1;
        for(j=0;j<=n;j++)    //求mes{}中未出现的最小的非负整数
        {
            if(hash[j]==0)
            {
                sg[i]=j;
                break;
            }
        }
    }
}
View Code

模板2如下(dfs):

技术分享
//注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1遍
//n是集合s的大小 S[i]是定义的特殊取法规则的数组
int s[110],sg[10010],n;
int SG_dfs(int x)
{
    int i;
    if(sg[x]!=-1)
        return sg[x];
    bool vis[110];
    memset(vis,0,sizeof(vis));
    for(i=0;i<n;i++)
    {
        if(x>=s[i])
        {
            SG_dfs(x-s[i]);
            vis[sg[x-s[i]]]=1;
        }
    }
    int e;
    for(i=0;;i++)
        if(!vis[i])
        {
            e=i;
            break;
        }
    return sg[x]=e;
}
View Code

 

hdu  1848

题意:取石子问题,一共有3堆石子,每次只能取斐波那契数个石子,先取完石子者胜利,问先手胜还是后手胜

  1. 可选步数为一系列不连续的数,用GetSG(计算) 
  2. 最终结果是所有SG值异或的结果 

AC代码如下:

技术分享
#include<stdio.h>
#include<string.h>
#define N 1001
//f[]:可以取走的石子个数
//sg[]:0~n的SG函数值
//hash[]:mex{}
int f[N],sg[N],hash[N];     
void getSG(int n)
{
    int i,j;
    memset(sg,0,sizeof(sg));
    for(i=1;i<=n;i++)
    {
        memset(hash,0,sizeof(hash));
        for(j=1;f[j]<=i;j++)
            hash[sg[i-f[j]]]=1;
        for(j=0;j<=n;j++)    //求mes{}中未出现的最小的非负整数
        {
            if(hash[j]==0)
            {
                sg[i]=j;
                break;
            }
        }
    }
}
int main()
{
    int i,m,n,p;
    f[0]=f[1]=1;
    for(i=2;i<=16;i++)
        f[i]=f[i-1]+f[i-2];
    getSG(1000);
    while(scanf("%d%d%d",&m,&n,&p)!=EOF)
    {
        if(m==0&&n==0&&p==0)
            break;
        if((sg[m]^sg[n]^sg[p])==0)
            printf("Nacci\n");
        else
            printf("Fibo\n");
    }
    return 0;
}
View Code

 

hdu  1536

题意:首先输入K 表示一个集合的大小  之后输入集合 表示对于这对石子只能去这个集合中的元素的个数

之后输入 一个m 表示接下来对于这个集合要进行m次询问 

之后m行 每行输入一个n 表示有n个堆  每堆有n1个石子  问这一行所表示的状态是赢还是输 如果赢输入W否则L

思路:对于n堆石子 可以分成n个游戏 之后把n个游戏合起来就好了
 
AC代码如下:
技术分享
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
//注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1遍
//n是集合s的大小 S[i]是定义的特殊取法规则的数组
int s[110],sg[10010],n;
int SG_dfs(int x)
{
    int i;
    if(sg[x]!=-1)
        return sg[x];
    bool vis[110];
    memset(vis,0,sizeof(vis));
    for(i=0;i<n;i++)
    {
        if(x>=s[i])
        {
            SG_dfs(x-s[i]);
            vis[sg[x-s[i]]]=1;
        }
    }
    int e;
    for(i=0;;i++)
        if(!vis[i])
        {
            e=i;
            break;
        }
    return sg[x]=e;
}
int main()
{
    int i,m,t,num;
    while(scanf("%d",&n)&&n)
    {
        for(i=0;i<n;i++)
            scanf("%d",&s[i]);
        memset(sg,-1,sizeof(sg));
        sort(s,s+n);
        scanf("%d",&m);
        while(m--)
        {
            scanf("%d",&t);
            int ans=0;
            while(t--)
            {
                scanf("%d",&num);
                ans^=SG_dfs(num);
            }
            if(ans==0)
                printf("L");
            else
                printf("W");
        }
        printf("\n");
    }
    return 0;
}
View Code

 

from:http://www.cnblogs.com/frog112111/p/3199780.html

SG函数模板(转)

标签:

原文地址:http://www.cnblogs.com/bofengyu/p/5506497.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!