标签:
对于不同的字符串,我们希望能有办法判断相似程度,我们定义了一套操作方法来把两个不相同的字符串变得相同,具体的操作方法如下:
1 修改一个字符,如把“a”替换为“b”。
2 增加一个字符,如把“abdd”变为“aebdd”。
3 删除一个字符,如把“travelling”变为“traveling”。
比如,对于“abcdefg”和“abcdef”两个字符串来说,我们认为可以通过增加和减少一个“g”的方式来达到目的。上面的两种方案,都只需要一次操作。把这个操作所需要的次数定义为两个字符串的距离,而相似度等于“距离+1”的倒数。也就是说,“abcdefg”和“abcdef”的距离为1,相似度为1/2=0.5.
给定任意两个字符串,你是否能写出一个算法来计算出它们的相似度呢?
请实现如下接口
/**
* 功能:计算字符串的相似度
* 输入:pucAExpression/ pucBExpression:字符串格式,如: "abcdef"
* 返回:字符串的相似度,相似度等于“距离+1”的倒数,结果请用1/字符串的形式,如1/2
*/
public static String stringDistance(String expressionA, String expressionB) {
/* 请实现*/
return null;
}
约束:
1、PucAExpression/ PucBExpression字符串中的有效字符包括26个小写字母。
2、PucAExpression/ PucBExpression算术表达式的有效性由调用者保证;
3、超过result范围导致信息无法正确表达的,返回null。
输入两个字符串
输出相似度,string类型
abcdef
abcdefg
1/2
import java.util.Scanner;
/**
* Author: 王俊超
* Date: 2016-01-04 09:31
* Declaration: All Rights Reserved !!!
*/
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
// Scanner scanner = new Scanner(Main.class.getClassLoader().getResourceAsStream("data.txt"));
while (scanner.hasNext()) {
String a = scanner.nextLine();
String b = scanner.nextLine();
System.out.println("1/" + (stringDistance(a.toCharArray(), b.toCharArray()) + 1));
}
scanner.close();
}
/**
* 很经典的可使用动态规划方法解决的题目,和计算两字符串的最长公共子序列相似。
* <p>
* 设Ai为字符串A(a1a2a3 … am)的前i个字符(即为a1,a2,a3 … ai)
* 设Bj为字符串B(b1b2b3 … bn)的前j个字符(即为b1,b2,b3 … bj)
* <p>
* 设 L(i,j)为使两个字符串和Ai和Bj相等的最小操作次数。
* 当ai==bj时 显然 L(i,j) = L(i-1,j-1)
* 当ai!=bj时
* <p>
* 若将它们修改为相等,则对两个字符串至少还要操作L(i-1,j-1)次
* 若删除ai或在bj后添加ai,则对两个字符串至少还要操作L(i-1,j)次
* 若删除bj或在ai后添加bj,则对两个字符串至少还要操作L(i,j-1)次
* 此时L(i,j) = min( L(i-1,j-1), L(i-1,j), L(i,j-1) ) + 1
* <p>
* 显然,L(i,0)=i,L(0,j)=j, 再利用上述的递推公式,可以直接计算出L(i,j)值。
* </pre>
*
* @param a
* @param b
* @return
*/
private static int stringDistance(char[] a, char[] b) {
int[][] len = new int[a.length + 1][b.length + 1];
for (int i = 0; i < len.length; i++) {
len[i][0] = i;
}
for (int j = 0; j < len[0].length; j++) {
len[0][j] = j;
}
for (int i = 1; i < len.length; i++) {
for (int j = 1; j < len[0].length; j++) {
if (a[i - 1] == b[j - 1]) {
len[i][j] = len[i - 1][j - 1];
} else {
len[i][j] = Math.min(Math.min(len[i - 1][j], len[i - 1][j - 1]), len[i][j - 1]) + 1;
}
}
}
return len[len.length - 1][len[0].length - 1];
}
}
标签:
原文地址:http://blog.csdn.net/derrantcm/article/details/51450638