标签:
1. ORB特征匹配 BruteForce-Hamming匹配
//使用ORB特征匹配两张图片,并进行运行时间,对称性测试,ratio测试 #include <iostream> #include <ctime> //#include <dirent.h> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/nonfree/features2d.hpp> #include <opencv2/nonfree/nonfree.hpp> using namespace cv; using namespace std; /* int main(int argc, const char *argv[]) { if (argc != 4){ cout << "usage:match <image1> <image2> <ratio>\n"; exit(-1); } double ratio = (double)atof(argv[3]); string image1_name = string(argv[1]), image2_name = string(argv[2]); Mat image1 = imread(image1_name, 1); Mat image2 = imread(image2_name, 1); */ int main() { Mat image1 = imread("img_1.bmp", 1); Mat image2 = imread("img_2.bmp", 1); Ptr<FeatureDetector> detector; Ptr<DescriptorExtractor> extractor; float ratio = 0.8; // 修改获得不同实验结果 // ORB特征点、描述子检测器 detector = FeatureDetector::create("ORB"); extractor = DescriptorExtractor::create("ORB"); cout << "ORB特征点、描述子、BruteForce-Hamming匹配" << endl; cout << "ratio = " << ratio << endl; clock_t begin = clock(); // 特征点 vector<KeyPoint> keypoints1, keypoints2; detector->detect(image1, keypoints1); detector->detect(image2, keypoints2); cout << "# keypoints of image1 :" << keypoints1.size() << endl; cout << "# keypoints of image2 :" << keypoints2.size() << endl; // 计算描述子 Mat descriptors1, descriptors2; extractor->compute(image1, keypoints1, descriptors1); extractor->compute(image2, keypoints2, descriptors2); cout << "Descriptors size :" << descriptors1.cols << ":" << descriptors1.rows << endl; vector< vector<DMatch> > matches12, matches21; Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); // knn:K最近邻,flann: 快速最近邻逼近搜索 matcher->knnMatch(descriptors1, descriptors2, matches12, 2); // 最近邻匹配 matcher->knnMatch(descriptors2, descriptors1, matches21, 2); // BFMatcher bfmatcher(NORM_L2, true); // vector<DMatch> matches; // bfmatcher.match(descriptors1, descriptors2, matches); cout << "Matches1-2:" << matches12.size() << endl; cout << "Matches2-1:" << matches21.size() << endl; // ratio test proposed by David Lowe paper = 0.8 std::vector<DMatch> good_matches1, good_matches2; // Yes , the code here is redundant, it is easy to reconstruct it .... for (int i = 0; i < matches12.size(); i++){ if (matches12[i][0].distance < ratio * matches12[i][1].distance) good_matches1.push_back(matches12[i][0]); } for (int i = 0; i < matches21.size(); i++){ if (matches21[i][0].distance < ratio * matches21[i][1].distance) good_matches2.push_back(matches21[i][0]); } cout << "Good matches1:" << good_matches1.size() << endl; cout << "Good matches2:" << good_matches2.size() << endl; // Symmetric Test 对称性测试 std::vector<DMatch> better_matches; for (int i = 0; i<good_matches1.size(); i++){ for (int j = 0; j<good_matches2.size(); j++){ if (good_matches1[i].queryIdx == good_matches2[j].trainIdx && good_matches2[j].queryIdx == good_matches1[i].trainIdx){ better_matches.push_back(DMatch(good_matches1[i].queryIdx, good_matches1[i].trainIdx, good_matches1[i].distance)); break; } } } cout << "Better matches:" << better_matches.size() << endl; // 计时结束 clock_t end = clock(); double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC; cout << "Time Costs : " << elapsed_secs << endl; // 输出 Mat output; drawMatches(image1, keypoints1, image2, keypoints2, better_matches, output); imshow("Matches result", output); waitKey(0); return 0; }
2. surf特征点、描述子、Flann算法匹配描述子
// surf特征点匹配:surf特征点、描述子、Flann算法匹配描述子 #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include <opencv2/nonfree/nonfree.hpp> #include<opencv2/legacy/legacy.hpp> #include <iostream> #include <ctime> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat img_1 = imread("img_1.bmp", 1); Mat img_2 = imread("img_2.bmp", 1); if (!img_1.data || !img_2.data) { printf("读取图片image错误! \n"); return false; } cout << "SURF特征点、描述子、FLANN描述子匹配" << endl; cout << "筛选条件:5倍最小距离" << endl; clock_t begin = clock(); // 特征点 int minHessian = 300; // surf算法中的hessian阈值 SURF detector(minHessian); std::vector<KeyPoint> keypoints_1, keypoints_2; detector.detect(img_1, keypoints_1); detector.detect(img_2, keypoints_2); cout << "# keypoints of image1 :" << keypoints_1.size() << endl; cout << "# keypoints of image2 :" << keypoints_2.size() << endl; // 描述子/特征向量 SURF extractor; Mat descriptors_1, descriptors_2; extractor.compute(img_1, keypoints_1, descriptors_1); extractor.compute(img_2, keypoints_2, descriptors_2); cout << "Descriptors size :" << descriptors_1.cols << ":" << descriptors_1.rows << endl; // 匹配描述子 FlannBasedMatcher matcher; std::vector< DMatch > matches; matcher.match(descriptors_1, descriptors_2, matches); double max_dist = 0; double min_dist = 100; // 特征点最大最小距离 for (int i = 0; i < descriptors_1.rows; i++) { double dist = matches[i].distance; if (dist < min_dist) min_dist = dist; if (dist > max_dist) max_dist = dist; } // 输出 printf("> 最大距离(Max dist) : %f \n", max_dist); printf("> 最小距离(Min dist) : %f \n", min_dist); // 筛选 std::vector< DMatch > good_matches; for (int i = 0; i < descriptors_1.rows; i++) { if (matches[i].distance < 5 * min_dist) { good_matches.push_back(matches[i]); } } cout << "Good_matches:" << good_matches.size() << endl; // 计时结束 clock_t end = clock(); double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC; cout << "Time Costs : " << elapsed_secs << endl; // 绘制 Mat img_matches; drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); /* // 输出 每个匹配的特征点 for (int i = 0; i < good_matches.size(); i++) { printf(">符合条件的匹配点 [%d] 特征点1: %d -- 特征点2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx); } */ // 显示 imshow("匹配效果图", img_matches); // 任意键退出 waitKey(0); return 0; }
3. sift特征点、描述子+FLANN算法
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/features2d/features2d.hpp> #include <opencv2/nonfree/nonfree.hpp> #include <iostream> //#include <dirent.h> #include <ctime> using namespace cv; using namespace std; int main(int argc, const char *argv[]){ /* if (argc != 3){ cout << "usage:match <level> <image1> <image2>\n"; exit(-1); } string arg2 = string(argv[2]); int level = atoi(arg2.c_str()); string image1_name = string(argv[1]), image2_name = string(argv[2]); // getline(cin, image1_name); // getline(cin, image2_name); */ Mat image1 = imread("img_1.bmp", 1); Mat image2 = imread("img_2.bmp", 1); Ptr<FeatureDetector> detector; Ptr<DescriptorExtractor> extractor; initModule_nonfree(); /* * SIFT,SURF, ORB */ detector = FeatureDetector::create("SIFT"); extractor = DescriptorExtractor::create("SIFT"); cout << "Sift特征点、描述子、FLANN匹配" << endl; // cout << "ratio = " << ratio << endl; clock_t begin = clock(); vector<KeyPoint> keypoints1, keypoints2; detector->detect(image1, keypoints1); detector->detect(image2, keypoints2); cout << "# keypoints of image1 :" << keypoints1.size() << endl; cout << "# keypoints of image2 :" << keypoints2.size() << endl; Mat descriptors1, descriptors2; extractor->compute(image1, keypoints1, descriptors1); extractor->compute(image2, keypoints2, descriptors2); cout << "Descriptors size :" << descriptors1.cols << ":" << descriptors1.rows << endl; vector< vector<DMatch> > matches12, matches21; Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased"); matcher->knnMatch(descriptors1, descriptors2, matches12, 2); matcher->knnMatch(descriptors2, descriptors1, matches21, 2); cout << "Matches1-2:" << matches12.size() << endl; cout << "Matches2-1:" << matches21.size() << endl; // ratio test proposed by David Lowe paper = 0.8 std::vector<DMatch> good_matches1, good_matches2; for (int i = 0; i < matches12.size(); i++){ const float ratio = 0.8; if (matches12[i][0].distance < ratio * matches12[i][1].distance) good_matches1.push_back(matches12[i][0]); } for (int i = 0; i < matches21.size(); i++){ const float ratio = 0.8; if (matches21[i][0].distance < ratio * matches21[i][1].distance) good_matches2.push_back(matches21[i][0]); } cout << "Good matches1:" << good_matches1.size() << endl; cout << "Good matches2:" << good_matches2.size() << endl; // Symmetric Test std::vector<DMatch> better_matches; for (int i = 0; i<good_matches1.size(); i++){ for (int j = 0; j<good_matches2.size(); j++){ if (good_matches1[i].queryIdx == good_matches2[j].trainIdx && good_matches2[j].queryIdx == good_matches1[i].trainIdx){ better_matches.push_back(DMatch(good_matches1[i].queryIdx, good_matches1[i].trainIdx, good_matches1[i].distance)); break; } } } cout << "Better matches:" << better_matches.size() << endl; clock_t end = clock(); double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC; cout << "Time Costs : " << elapsed_secs << endl; // show it on an image Mat output; drawMatches(image1, keypoints1, image2, keypoints2, better_matches, output); imshow("Matches result", output); waitKey(0); return 0; }
4. SIFT特征点、描述子+暴力匹配
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/nonfree/features2d.hpp> // #include <opencv2/nonfree/nonfree.hpp> #include <iostream> //#include <dirent.h> #include <ctime> using namespace cv; using namespace std; int main(int argc, const char *argv[]){ /* if (argc != 3){ cout << "usage:match <level> <image1> <image2>\n"; exit(-1); } string arg2 = string(argv[2]); int level = atoi(arg2.c_str()); string image1_name = string(argv[1]), image2_name = string(argv[2]); // getline(cin, image1_name); // getline(cin, image2_name); */ Mat image1 = imread("img_1.bmp", 1); Mat image2 = imread("img_2.bmp", 1); Ptr<FeatureDetector> detector; Ptr<DescriptorExtractor> extractor; initModule_nonfree(); /* * SIFT,SURF, ORB */ detector = FeatureDetector::create("SIFT"); extractor = DescriptorExtractor::create("SIFT"); cout << "sift特征点、描述子、暴力匹配" << endl; //cout << "筛选条件:5倍最小距离" << endl; clock_t begin = clock(); vector<KeyPoint> keypoints1, keypoints2; detector->detect(image1, keypoints1); detector->detect(image2, keypoints2); cout << "# keypoints of image1 :" << keypoints1.size() << endl; cout << "# keypoints of image2 :" << keypoints2.size() << endl; Mat descriptors1, descriptors2; extractor->compute(image1, keypoints1, descriptors1); extractor->compute(image2, keypoints2, descriptors2); cout << "Descriptors size :" << descriptors1.cols << ":" << descriptors1.rows << endl; vector< vector<DMatch> > matches12, matches21; Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce"); matcher->knnMatch(descriptors1, descriptors2, matches12, 2); matcher->knnMatch(descriptors2, descriptors1, matches21, 2); // BFMatcher bfmatcher(NORM_L2, true); // vector<DMatch> matches; // bfmatcher.match(descriptors1, descriptors2, matches); cout << "Matches1-2:" << matches12.size() << endl; cout << "Matches2-1:" << matches21.size() << endl; // ratio test proposed by David Lowe paper = 0.8 std::vector<DMatch> good_matches1, good_matches2; for (int i = 0; i < matches12.size(); i++){ const float ratio = 0.8; if (matches12[i][0].distance < ratio * matches12[i][1].distance) good_matches1.push_back(matches12[i][0]); } for (int i = 0; i < matches21.size(); i++){ const float ratio = 0.8; if (matches21[i][0].distance < ratio * matches21[i][1].distance) good_matches2.push_back(matches21[i][0]); } cout << "Good matches1:" << good_matches1.size() << endl; cout << "Good matches2:" << good_matches2.size() << endl; // Symmetric Test std::vector<DMatch> better_matches; for (int i = 0; i<good_matches1.size(); i++){ for (int j = 0; j<good_matches2.size(); j++){ if (good_matches1[i].queryIdx == good_matches2[j].trainIdx && good_matches2[j].queryIdx == good_matches1[i].trainIdx){ better_matches.push_back(DMatch(good_matches1[i].queryIdx, good_matches1[i].trainIdx, good_matches1[i].distance)); break; } } } cout << "Better matches:" << better_matches.size() << endl; clock_t end = clock(); double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC; cout << "Time Costs : " << elapsed_secs << endl; // show it on an image Mat output; drawMatches(image1, keypoints1, image2, keypoints2, better_matches, output); imshow("Matches result", output); waitKey(0); return 0; }
5. fast特征点 surf描述子 暴力匹配
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/nonfree/features2d.hpp> // #include <opencv2/nonfree/nonfree.hpp> #include <iostream> //#include <dirent.h> #include <ctime> using namespace cv; using namespace std; #define IMG_DIR "./imgs/" bool has_suffix(const std::string &str, const std::string &suffix); int main(int argc, const char *argv[]){ /* if (argc != 2){ cout << "usage:match <method>\n"; exit(-1); } string method = string(argv[1]); string image1_name, image2_name; getline(cin, image1_name); getline(cin, image2_name); */ Mat image1 = imread("img_1.bmp", 1); Mat image2 = imread("img_2.bmp", 1); FastFeatureDetector fast(40); // 检测的阈值为40 SurfDescriptorExtractor extractor; //Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create("SIFT"); // WHY CANNOT WORK ??? cout << "fast特征点、surf描述子、暴力匹配" << endl; clock_t begin = clock(); vector<KeyPoint> keypoints1, keypoints2; fast.detect(image1, keypoints1); fast.detect(image2, keypoints2); cout << "# keypoints of image1 :" << keypoints1.size() << endl; cout << "# keypoints of image2 :" << keypoints2.size() << endl; Mat descriptors1, descriptors2; extractor.compute(image1, keypoints1, descriptors1); extractor.compute(image2, keypoints2, descriptors2); clock_t end = clock(); double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC; cout << "Time Costs : " << elapsed_secs << endl; BFMatcher bfmatcher(NORM_L2, true); vector<DMatch> matches; bfmatcher.match(descriptors1, descriptors2, matches); cout << "# matches : " << matches.size() << endl; // show it on an image Mat output; drawMatches(image1, keypoints1, image2, keypoints2, matches, output); imshow("Matches result", output); waitKey(0); return 0; } bool has_suffix(const std::string &str, const std::string &suffix) { return str.size() >= suffix.size() && str.compare(str.size() - suffix.size(), suffix.size(), suffix) == 0; }
6. fast特征点、orb描述子、BruteForce-Hamming匹配
#include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/nonfree/features2d.hpp> // #include <opencv2/nonfree/nonfree.hpp> #include <iostream> //#include <dirent.h> #include <ctime> using namespace cv; using namespace std; int main(int argc, const char *argv[]){ /* if (argc != 3){ cout << "usage:match <image1> <image2>\n"; exit(-1); } string image1_name = string(argv[1]), image2_name = string(argv[2]); // getline(cin, image1_name); // getline(cin, image2_name); */ Mat image1 = imread("img_1.bmp", 1); Mat image2 = imread("img_2.bmp", 1); vector<KeyPoint> keypoints_1, keypoints_2; Mat descriptors_1, descriptors_2; cout << "fast特征点、orb描述子、BruteForce-Hamming匹配" << endl; //cout << "筛选条件:5倍最小距离" << endl; clock_t begin = clock(); Ptr<FeatureDetector> detector; detector = new DynamicAdaptedFeatureDetector(new FastAdjuster(10, true), 3000, 6000, 8); detector->detect(image1, keypoints_1); detector->detect(image2, keypoints_2); cout << "# keypoints of image1 :" << keypoints_1.size() << endl; cout << "# keypoints of image2 :" << keypoints_2.size() << endl; initModule_nonfree();//NB. need this, otherwise get coredump ,oops !!!!! Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create("ORB"); extractor->compute(image1, keypoints_1, descriptors_1); extractor->compute(image2, keypoints_2, descriptors_2); vector< vector<DMatch> > matches; Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); matcher->knnMatch(descriptors_1, descriptors_2, matches, 500); //look whether the match is inside a defined area of the image //only 25% of maximum of possible distance double tresholdDist = 0.25 * sqrt(double(image1.size().height*image1.size().height + image1.size().width*image1.size().width)); vector< DMatch > good_matches2; good_matches2.reserve(matches.size()); for (size_t i = 0; i < matches.size(); ++i){ for (int j = 0; j < matches[i].size(); j++) { Point2f from = keypoints_1[matches[i][j].queryIdx].pt; Point2f to = keypoints_2[matches[i][j].trainIdx].pt; //calculate local distance for each possible match double dist = sqrt((from.x - to.x) * (from.x - to.x) + (from.y - to.y) * (from.y - to.y)); //save as best match if local distance is in specified area and on same height if (dist < tresholdDist && abs(from.y - to.y)<5) { good_matches2.push_back(matches[i][j]); j = matches[i].size(); } } } cout << "Good matches :" << good_matches2.size() << endl; clock_t end = clock(); double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC; cout << "Time Costs : " << elapsed_secs << endl; // show it on an image Mat output; drawMatches(image1, keypoints_1, image2, keypoints_2, good_matches2, output); imshow("Matches result", output); waitKey(0); }
参考资料
1. http://blog.csdn.net/vonzhoufz/article/details/46594369
2. 《opencv3编程入门》
标签:
原文地址:http://www.cnblogs.com/lizhongpingchn/p/5509298.html