码迷,mamicode.com
首页 > 其他好文 > 详细

计组_IEEE754_练习题

时间:2016-05-21 14:19:01      阅读:2296      评论:0      收藏:0      [点我收藏+]

标签:

IEEE754   阶码:移码;尾数:原码
一个规格化的32位浮点数x的真值可表示为:
         x=(-1)^s×(1. M) × 2^(E-127)       e=E-127
其中尾数域所表示的值是1. M。因为规格化的浮点数的尾数域最左位(最高有效位)总是1。故这一位经常不予存储,而认为隐藏在小数点的左边。
 
 
64位的浮点数中符号位1位,阶码域11位,尾数域52位,指数偏移值是1023。因此规格化的64位浮点数x的真值为:
         x=(-1)^s ×(1.M) × 2^(E-1023)     e=E-1023
 
技术分享
 
IEEE754练习题:
1、将十进制数178.125表示成微机中的单精度浮点数。
  解:178.125=10110010.001B
                    =1.0110010001×2^7 
   指数E=7+127=134=10000110B 
  127是单精度浮点数应加的指数偏移量,其完整的浮点数形式为:
   0   10000110   011 0010 0010 0000 0000 0000
    = 43322000H

2、将下面Pentium机中的单精度浮点数表示成十进制真值是多少?
0011 ,1111,0101,1000,0000,0000,0000,0000 
  解:0011 ,1111,0101,1000,0000,0000,0000,0000
  数符:S=(-1) 0=1   (正号)
  阶码: E=(01111110)2-127=126-127= -1
  尾数: D=(1.1011)2
      X= 1.1011×2-1= (0.11011)2=0.84375
 

计组_IEEE754_练习题

标签:

原文地址:http://www.cnblogs.com/jasonlixuetao/p/5514629.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!