标签:style blog color 使用 os strong io for
输入两颗二叉树A,B,判断B是不是A的子结构。
输入可能包含多个测试样例,输入以EOF结束。
对于每个测试案例,输入的第一行一个整数n,m(1<=n<=1000,1<=m<=1000):n代表将要输入的二叉树A的节点个数(节点从1开始计数),m代表将要输入的二叉树B的节点个数(节点从1开始计数)。接下来一行有n个数,每个数代表A树中第i个元素的数值,接下来有n行,第一个数Ki代表第i个节点的子孩子个数,接下来有Ki个树,代表节点i子孩子节点标号。接下来m+1行,与树A描述相同。
对应每个测试案例,
若B是A的子树输出”YES”(不包含引号)。否则,输出“NO”(不包含引号)。
7 3 8 8 7 9 2 4 7 2 2 3 2 4 5 0 0 2 6 7 0 0 8 9 2 2 2 3 0 0 1 1 2 0 3 0
YES NO
B为空树时不是任何树的子树。
代码:
#include<iostream>
using namespace std;
typedef struct _BNOODE_
{
int data;
struct _BNOODE_ *lChild;
struct _BNOODE_ *rChild;
}BNode,*pTree;
//判断pTree1和pTree2是否相同
bool isSubTree(pTree pTree1,pTree pTree2)
{
if(pTree2 == NULL)
{
return true;
}
if(pTree1 == NULL)
{
return false;
}
if(pTree1->data != pTree2->data)
{
return false;
}
return isSubTree(pTree1->lChild,pTree2->lChild) && isSubTree(pTree1->rChild,pTree2->rChild);
}
//判断pTree1中是否包含pTree2
bool isConstansTree(pTree pTree1,pTree pTree2)
{
if(pTree1 == NULL || pTree2 == NULL)
{
return false;
}
bool result = false;
if(pTree1->data == pTree2->data)
{
result = isSubTree(pTree1,pTree2);
}
if(!result)
{
result = isConstansTree(pTree1->lChild,pTree2);
}
if(!result)
{
result = isConstansTree(pTree1->rChild,pTree2);
}
return result;
}
void create(pTree *ppTree)
{
int data = 0;
cin>>data;
if(data != -1)
{
*ppTree = (pTree)malloc(sizeof(BNode));
if(*ppTree == NULL)
{
exit(-1);
}
(*ppTree)->data = data;
(*ppTree)->lChild = NULL;
(*ppTree)->rChild = NULL;
create(&(*ppTree)->lChild);
create(&(*ppTree)->rChild);
}
}
int main()
{
pTree pa,pb;
cout<<"input tree A"<<endl;
create(&pa);
cout<<"input tree B:"<<endl;
create(&pb);
cout<<"result is:";
if(isConstansTree(pa,pb))
{
cout<<"YES\n";
}else
{
cout<<"NO\n";
}
return 0;
}/*
树的子树结构
by Rowandjj
2014/8/1
*/
#include<stdio.h>
#include<stdlib.h>
typedef struct _BNODE_
{
int data;
int lChild;
int rChild;
}BNode;
bool isSubTree(BNode *pTree1,int index1,BNode *pTree2,int index2)
{//递归依次比较每个结点的值
if(index2 == -1)
{
return true;
}
if(index1 == -1)
{
return false;
}
if(pTree1[index1].data != pTree2[index2].data)
{
return false;
}
else
return isSubTree(pTree1,pTree1[index1].lChild,pTree2,pTree2[index2].lChild)&&
isSubTree(pTree1,pTree1[index1].rChild,pTree2,pTree2[index2].rChild);
}
bool isContainsTree(BNode *pTree1,int index1,BNode *pTree2,int index2)
{
if(pTree1 == NULL || pTree2 == NULL || index1 == -1 || index2 == -1)
{
return false;
}
bool result = false;
//找到一个结点使得这个结点和待比较树的根结点值相同
if(pTree1[index1].data == pTree2[index2].data)
{
result = isSubTree(pTree1,index1,pTree2,index2);
}
//否则递归左子树和右子树
if(!result)
{
result = isContainsTree(pTree1,pTree1[index1].lChild,pTree2,index2);
}
if(!result)
{
result = isContainsTree(pTree1,pTree1[index1].rChild,pTree2,index2);
}
return result;
}
int main()
{
int m,n;
while(scanf("%d %d",&n,&m) != EOF)
{
BNode *pTree1 = NULL;
if(n > 0)
{
pTree1 = (BNode *)malloc(sizeof(BNode) * n);
if(!pTree1)
{
exit(-1);
}
int i,data;
for(i = 0; i < n; i++)
{
scanf("%d",&data);
pTree1[i].data = data;
pTree1[i].lChild = -1;
pTree1[i].rChild = -1;
}
for(i = 0; i < n; i++)
{
int ki;
scanf("%d",&ki);
if(ki == 0)
{
continue;
}else if(ki == 1)
{
int l;
scanf("%d",&l);
pTree1[i].lChild = l-1;
}else if(ki == 2)
{
int r,l;
scanf("%d %d",&l,&r);
pTree1[i].lChild = l-1;
pTree1[i].rChild = r-1;
}
}
}
BNode *pTree2 = NULL;
if(m > 0)
{
pTree2 = (BNode *)malloc(sizeof(BNode) * m);
if(pTree2 == NULL)
{
exit(-1);
}
int i,data;
for(i = 0; i < m; i++)
{
scanf("%d",&data);
pTree2[i].data = data;
pTree2[i].lChild = -1;
pTree2[i].rChild = -1;
}
for(i = 0; i < m; i++)
{
int ki;
scanf("%d",&ki);
if(ki == 0)
{
continue;
}else if(ki == 1)
{
int l;
scanf("%d",&l);
pTree2[i].lChild = l-1;
}else if(ki == 2)
{
int r,l;
scanf("%d %d",&l,&r);
pTree2[i].lChild = l-1;
pTree2[i].rChild = r-1;
}
}
}
if(isContainsTree(pTree1,0,pTree2,0))
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
标签:style blog color 使用 os strong io for
原文地址:http://blog.csdn.net/chdjj/article/details/38336003