标签:style blog color 使用 os strong io for
输入两颗二叉树A,B,判断B是不是A的子结构。
输入可能包含多个测试样例,输入以EOF结束。
对于每个测试案例,输入的第一行一个整数n,m(1<=n<=1000,1<=m<=1000):n代表将要输入的二叉树A的节点个数(节点从1开始计数),m代表将要输入的二叉树B的节点个数(节点从1开始计数)。接下来一行有n个数,每个数代表A树中第i个元素的数值,接下来有n行,第一个数Ki代表第i个节点的子孩子个数,接下来有Ki个树,代表节点i子孩子节点标号。接下来m+1行,与树A描述相同。
对应每个测试案例,
若B是A的子树输出”YES”(不包含引号)。否则,输出“NO”(不包含引号)。
7 3 8 8 7 9 2 4 7 2 2 3 2 4 5 0 0 2 6 7 0 0 8 9 2 2 2 3 0 0 1 1 2 0 3 0
YES NO
B为空树时不是任何树的子树。
代码:
#include<iostream> using namespace std; typedef struct _BNOODE_ { int data; struct _BNOODE_ *lChild; struct _BNOODE_ *rChild; }BNode,*pTree; //判断pTree1和pTree2是否相同 bool isSubTree(pTree pTree1,pTree pTree2) { if(pTree2 == NULL) { return true; } if(pTree1 == NULL) { return false; } if(pTree1->data != pTree2->data) { return false; } return isSubTree(pTree1->lChild,pTree2->lChild) && isSubTree(pTree1->rChild,pTree2->rChild); } //判断pTree1中是否包含pTree2 bool isConstansTree(pTree pTree1,pTree pTree2) { if(pTree1 == NULL || pTree2 == NULL) { return false; } bool result = false; if(pTree1->data == pTree2->data) { result = isSubTree(pTree1,pTree2); } if(!result) { result = isConstansTree(pTree1->lChild,pTree2); } if(!result) { result = isConstansTree(pTree1->rChild,pTree2); } return result; } void create(pTree *ppTree) { int data = 0; cin>>data; if(data != -1) { *ppTree = (pTree)malloc(sizeof(BNode)); if(*ppTree == NULL) { exit(-1); } (*ppTree)->data = data; (*ppTree)->lChild = NULL; (*ppTree)->rChild = NULL; create(&(*ppTree)->lChild); create(&(*ppTree)->rChild); } } int main() { pTree pa,pb; cout<<"input tree A"<<endl; create(&pa); cout<<"input tree B:"<<endl; create(&pb); cout<<"result is:"; if(isConstansTree(pa,pb)) { cout<<"YES\n"; }else { cout<<"NO\n"; } return 0; }
/* 树的子树结构 by Rowandjj 2014/8/1 */ #include<stdio.h> #include<stdlib.h> typedef struct _BNODE_ { int data; int lChild; int rChild; }BNode; bool isSubTree(BNode *pTree1,int index1,BNode *pTree2,int index2) {//递归依次比较每个结点的值 if(index2 == -1) { return true; } if(index1 == -1) { return false; } if(pTree1[index1].data != pTree2[index2].data) { return false; } else return isSubTree(pTree1,pTree1[index1].lChild,pTree2,pTree2[index2].lChild)&& isSubTree(pTree1,pTree1[index1].rChild,pTree2,pTree2[index2].rChild); } bool isContainsTree(BNode *pTree1,int index1,BNode *pTree2,int index2) { if(pTree1 == NULL || pTree2 == NULL || index1 == -1 || index2 == -1) { return false; } bool result = false; //找到一个结点使得这个结点和待比较树的根结点值相同 if(pTree1[index1].data == pTree2[index2].data) { result = isSubTree(pTree1,index1,pTree2,index2); } //否则递归左子树和右子树 if(!result) { result = isContainsTree(pTree1,pTree1[index1].lChild,pTree2,index2); } if(!result) { result = isContainsTree(pTree1,pTree1[index1].rChild,pTree2,index2); } return result; } int main() { int m,n; while(scanf("%d %d",&n,&m) != EOF) { BNode *pTree1 = NULL; if(n > 0) { pTree1 = (BNode *)malloc(sizeof(BNode) * n); if(!pTree1) { exit(-1); } int i,data; for(i = 0; i < n; i++) { scanf("%d",&data); pTree1[i].data = data; pTree1[i].lChild = -1; pTree1[i].rChild = -1; } for(i = 0; i < n; i++) { int ki; scanf("%d",&ki); if(ki == 0) { continue; }else if(ki == 1) { int l; scanf("%d",&l); pTree1[i].lChild = l-1; }else if(ki == 2) { int r,l; scanf("%d %d",&l,&r); pTree1[i].lChild = l-1; pTree1[i].rChild = r-1; } } } BNode *pTree2 = NULL; if(m > 0) { pTree2 = (BNode *)malloc(sizeof(BNode) * m); if(pTree2 == NULL) { exit(-1); } int i,data; for(i = 0; i < m; i++) { scanf("%d",&data); pTree2[i].data = data; pTree2[i].lChild = -1; pTree2[i].rChild = -1; } for(i = 0; i < m; i++) { int ki; scanf("%d",&ki); if(ki == 0) { continue; }else if(ki == 1) { int l; scanf("%d",&l); pTree2[i].lChild = l-1; }else if(ki == 2) { int r,l; scanf("%d %d",&l,&r); pTree2[i].lChild = l-1; pTree2[i].rChild = r-1; } } } if(isContainsTree(pTree1,0,pTree2,0)) printf("YES\n"); else printf("NO\n"); } return 0; }
标签:style blog color 使用 os strong io for
原文地址:http://blog.csdn.net/chdjj/article/details/38336003