标签:
题目链接:https://leetcode.com/problems/edit-distance/
题目:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
思路:
c[i][j]表示word1的0~i子串和word2的0~j子串的最小编辑距离。状态转移方程:
如果sc[i]==tc[j]即最后一个字符相等 : c[i][j]=min{c[i-1][j],c[i][j-1],c[i-1][j-1]}
否则最后一个字符需要替换增加1个编辑距离:c[i][j]=min{c[i-1][j],c[i][j-1],c[i-1][j-1]+1}
算法:
-
public int minDistance(String word1, String word2) {
-
char sc[] = word1.toCharArray();
-
char tc[] = word2.toCharArray();
-
int[][] c = new int[word1.length() + 1][word2.length() + 1];
-
-
for (int i = 0; i <= word1.length(); i++) {
-
c[i][0] = i;
-
}
-
for (int j = 0; j <= word2.length(); j++) {
-
c[0][j] = j;
-
}
-
-
for (int i = 1; i <= word1.length(); i++) {
-
for (int j = 1; j <= word2.length(); j++) {
-
int n1 = c[i - 1][j] + 1;
-
int n2 = c[i][j - 1] + 1;
-
int n3 = c[i - 1][j - 1];
-
if (sc[i - 1] != tc[j - 1])
-
n3++;
-
c[i][j] = Math.min(n1, n2);
-
c[i][j] = Math.min(c[i][j], n3);
-
}
-
}
-
return c[word1.length()][word2.length()];
-
}
【Leetcode】Edit Distance
标签:
原文地址:http://blog.csdn.net/yeqiuzs/article/details/51472695