码迷,mamicode.com
首页 > 其他好文 > 详细

百联网上商城加密

时间:2016-05-25 18:47:36      阅读:174      评论:0      收藏:0      [点我收藏+]

标签:

技术分享
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
function int2char(n) { return BI_RM.charAt(n); }
function aaa(pwd,modulus,exponent) {
var rsaKey = new RSAKey();
rsaKey.setPublic(b64tohex(modulus), b64tohex(exponent));
 enPwd = hex2b64(rsaKey.encrypt(pwd));
return enPwd;
}
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);
function BigInteger(a,b,c) {
  if(a != null)
    if("number" == typeof a) this.fromNumber(a,b,c);
    else if(b == null && "string" != typeof a) this.fromString(a,256);
    else this.fromString(a,b);
}

// return new, unset BigInteger
function nbi() { return new BigInteger(null); }

// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.

// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
  while(--n >= 0) {
    var v = x*this[i++]+w[j]+c;
    c = Math.floor(v/0x4000000);
    w[j++] = v&0x3ffffff;
  }
  return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
  var xl = x&0x7fff, xh = x>>15;
  while(--n >= 0) {
    var l = this[i]&0x7fff;
    var h = this[i++]>>15;
    var m = xh*l+h*xl;
    l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
    c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
    w[j++] = l&0x3fffffff;
  }
  return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
  var xl = x&0x3fff, xh = x>>14;
  while(--n >= 0) {
    var l = this[i]&0x3fff;
    var h = this[i++]>>14;
    var m = xh*l+h*xl;
    l = xl*l+((m&0x3fff)<<14)+w[j]+c;
    c = (l>>28)+(m>>14)+xh*h;
    w[j++] = l&0xfffffff;
  }
  return c;
}
if(j_lm && ("navigator.appName" == "Microsoft Internet Explorer")) {
  BigInteger.prototype.am = am2;
  dbits = 30;
}
else if(j_lm && ("navigator.appName" != "Netscape")) {
  BigInteger.prototype.am = am1;
  dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
  BigInteger.prototype.am = am3;
  dbits = 28;
}

BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);

var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;

// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;

function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
  var c = BI_RC[s.charCodeAt(i)];
  return (c==null)?-1:c;
}

// (protected) copy this to r
function bnpCopyTo(r) {
  for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
  r.t = this.t;
  r.s = this.s;
}

// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
  this.t = 1;
  this.s = (x<0)?-1:0;
  if(x > 0) this[0] = x;
  else if(x < -1) this[0] = x+DV;
  else this.t = 0;
}

// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }

// (protected) set from string and radix
function bnpFromString(s,b) {
  var k;
  if(b == 16) k = 4;
  else if(b == 8) k = 3;
  else if(b == 256) k = 8; // byte array
  else if(b == 2) k = 1;
  else if(b == 32) k = 5;
  else if(b == 4) k = 2;
  else { this.fromRadix(s,b); return; }
  this.t = 0;
  this.s = 0;
  var i = s.length, mi = false, sh = 0;
  while(--i >= 0) {
    var x = (k==8)?s[i]&0xff:intAt(s,i);
    if(x < 0) {
      if(s.charAt(i) == "-") mi = true;
      continue;
    }
    mi = false;
    if(sh == 0)
      this[this.t++] = x;
    else if(sh+k > this.DB) {
      this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
      this[this.t++] = (x>>(this.DB-sh));
    }
    else
      this[this.t-1] |= x<<sh;
    sh += k;
    if(sh >= this.DB) sh -= this.DB;
  }
  if(k == 8 && (s[0]&0x80) != 0) {
    this.s = -1;
    if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
  }
  this.clamp();
  if(mi) BigInteger.ZERO.subTo(this,this);
}

// (protected) clamp off excess high words
function bnpClamp() {
  var c = this.s&this.DM;
  while(this.t > 0 && this[this.t-1] == c) --this.t;
}

// (public) return string representation in given radix
function bnToString(b) {
  if(this.s < 0) return "-"+this.negate().toString(b);
  var k;
  if(b == 16) k = 4;
  else if(b == 8) k = 3;
  else if(b == 2) k = 1;
  else if(b == 32) k = 5;
  else if(b == 4) k = 2;
  else return this.toRadix(b);
  var km = (1<<k)-1, d, m = false, r = "", i = this.t;
  var p = this.DB-(i*this.DB)%k;
  if(i-- > 0) {
    if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
    while(i >= 0) {
      if(p < k) {
        d = (this[i]&((1<<p)-1))<<(k-p);
        d |= this[--i]>>(p+=this.DB-k);
      }
      else {
        d = (this[i]>>(p-=k))&km;
        if(p <= 0) { p += this.DB; --i; }
      }
      if(d > 0) m = true;
      if(m) r += int2char(d);
    }
  }
  return m?r:"0";
}

// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }

// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }

// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
  var r = this.s-a.s;
  if(r != 0) return r;
  var i = this.t;
  r = i-a.t;
  if(r != 0) return (this.s<0)?-r:r;
  while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
  return 0;
}

// returns bit length of the integer x
function nbits(x) {
  var r = 1, t;
  if((t=x>>>16) != 0) { x = t; r += 16; }
  if((t=x>>8) != 0) { x = t; r += 8; }
  if((t=x>>4) != 0) { x = t; r += 4; }
  if((t=x>>2) != 0) { x = t; r += 2; }
  if((t=x>>1) != 0) { x = t; r += 1; }
  return r;
}

// (public) return the number of bits in "this"
function bnBitLength() {
  if(this.t <= 0) return 0;
  return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}

// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
  var i;
  for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
  for(i = n-1; i >= 0; --i) r[i] = 0;
  r.t = this.t+n;
  r.s = this.s;
}

// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
  for(var i = n; i < this.t; ++i) r[i-n] = this[i];
  r.t = Math.max(this.t-n,0);
  r.s = this.s;
}

// (protected) r = this << n
function bnpLShiftTo(n,r) {
  var bs = n%this.DB;
  var cbs = this.DB-bs;
  var bm = (1<<cbs)-1;
  var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
  for(i = this.t-1; i >= 0; --i) {
    r[i+ds+1] = (this[i]>>cbs)|c;
    c = (this[i]&bm)<<bs;
  }
  for(i = ds-1; i >= 0; --i) r[i] = 0;
  r[ds] = c;
  r.t = this.t+ds+1;
  r.s = this.s;
  r.clamp();
}

// (protected) r = this >> n
function bnpRShiftTo(n,r) {
  r.s = this.s;
  var ds = Math.floor(n/this.DB);
  if(ds >= this.t) { r.t = 0; return; }
  var bs = n%this.DB;
  var cbs = this.DB-bs;
  var bm = (1<<bs)-1;
  r[0] = this[ds]>>bs;
  for(var i = ds+1; i < this.t; ++i) {
    r[i-ds-1] |= (this[i]&bm)<<cbs;
    r[i-ds] = this[i]>>bs;
  }
  if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
  r.t = this.t-ds;
  r.clamp();
}

// (protected) r = this - a
function bnpSubTo(a,r) {
  var i = 0, c = 0, m = Math.min(a.t,this.t);
  while(i < m) {
    c += this[i]-a[i];
    r[i++] = c&this.DM;
    c >>= this.DB;
  }
  if(a.t < this.t) {
    c -= a.s;
    while(i < this.t) {
      c += this[i];
      r[i++] = c&this.DM;
      c >>= this.DB;
    }
    c += this.s;
  }
  else {
    c += this.s;
    while(i < a.t) {
      c -= a[i];
      r[i++] = c&this.DM;
      c >>= this.DB;
    }
    c -= a.s;
  }
  r.s = (c<0)?-1:0;
  if(c < -1) r[i++] = this.DV+c;
  else if(c > 0) r[i++] = c;
  r.t = i;
  r.clamp();
}

// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
  var x = this.abs(), y = a.abs();
  var i = x.t;
  r.t = i+y.t;
  while(--i >= 0) r[i] = 0;
  for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
  r.s = 0;
  r.clamp();
  if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}

// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
  var x = this.abs();
  var i = r.t = 2*x.t;
  while(--i >= 0) r[i] = 0;
  for(i = 0; i < x.t-1; ++i) {
    var c = x.am(i,x[i],r,2*i,0,1);
    if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
      r[i+x.t] -= x.DV;
      r[i+x.t+1] = 1;
    }
  }
  if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
  r.s = 0;
  r.clamp();
}

// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m.  q or r may be null.
function bnpDivRemTo(m,q,r) {
  var pm = m.abs();
  if(pm.t <= 0) return;
  var pt = this.abs();
  if(pt.t < pm.t) {
    if(q != null) q.fromInt(0);
    if(r != null) this.copyTo(r);
    return;
  }
  if(r == null) r = nbi();
  var y = nbi(), ts = this.s, ms = m.s;
  var nsh = this.DB-nbits(pm[pm.t-1]);    // normalize modulus
  if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
  else { pm.copyTo(y); pt.copyTo(r); }
  var ys = y.t;
  var y0 = y[ys-1];
  if(y0 == 0) return;
  var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
  var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
  var i = r.t, j = i-ys, t = (q==null)?nbi():q;
  y.dlShiftTo(j,t);
  if(r.compareTo(t) >= 0) {
    r[r.t++] = 1;
    r.subTo(t,r);
  }
  BigInteger.ONE.dlShiftTo(ys,t);
  t.subTo(y,y);    // "negative" y so we can replace sub with am later
  while(y.t < ys) y[y.t++] = 0;
  while(--j >= 0) {
    // Estimate quotient digit
    var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
    if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {    // Try it out
      y.dlShiftTo(j,t);
      r.subTo(t,r);
      while(r[i] < --qd) r.subTo(t,r);
    }
  }
  if(q != null) {
    r.drShiftTo(ys,q);
    if(ts != ms) BigInteger.ZERO.subTo(q,q);
  }
  r.t = ys;
  r.clamp();
  if(nsh > 0) r.rShiftTo(nsh,r);    // Denormalize remainder
  if(ts < 0) BigInteger.ZERO.subTo(r,r);
}

// (public) this mod a
function bnMod(a) {
  var r = nbi();
  this.abs().divRemTo(a,null,r);
  if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
  return r;
}

// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
  if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
  else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;

// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
//         xy == 1 (mod m)
//         xy =  1+km
//   xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
  if(this.t < 1) return 0;
  var x = this[0];
  if((x&1) == 0) return 0;
  var y = x&3;        // y == 1/x mod 2^2
  y = (y*(2-(x&0xf)*y))&0xf;    // y == 1/x mod 2^4
  y = (y*(2-(x&0xff)*y))&0xff;    // y == 1/x mod 2^8
  y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16
  // last step - calculate inverse mod DV directly;
  // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
  y = (y*(2-x*y%this.DV))%this.DV;        // y == 1/x mod 2^dbits
  // we really want the negative inverse, and -DV < y < DV
  return (y>0)?this.DV-y:-y;
}

// Montgomery reduction
function Montgomery(m) {
  this.m = m;
  this.mp = m.invDigit();
  this.mpl = this.mp&0x7fff;
  this.mph = this.mp>>15;
  this.um = (1<<(m.DB-15))-1;
  this.mt2 = 2*m.t;
}

// xR mod m
function montConvert(x) {
  var r = nbi();
  x.abs().dlShiftTo(this.m.t,r);
  r.divRemTo(this.m,null,r);
  if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
  return r;
}

// x/R mod m
function montRevert(x) {
  var r = nbi();
  x.copyTo(r);
  this.reduce(r);
  return r;
}

// x = x/R mod m (HAC 14.32)
function montReduce(x) {
  while(x.t <= this.mt2)    // pad x so am has enough room later
    x[x.t++] = 0;
  for(var i = 0; i < this.m.t; ++i) {
    // faster way of calculating u0 = x[i]*mp mod DV
    var j = x[i]&0x7fff;
    var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
    // use am to combine the multiply-shift-add into one call
    j = i+this.m.t;
    x[j] += this.m.am(0,u0,x,i,0,this.m.t);
    // propagate carry
    while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
  }
  x.clamp();
  x.drShiftTo(this.m.t,x);
  if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}

// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }

// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }

Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;

// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }

// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
  if(e > 0xffffffff || e < 1) return BigInteger.ONE;
  var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
  g.copyTo(r);
  while(--i >= 0) {
    z.sqrTo(r,r2);
    if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
    else { var t = r; r = r2; r2 = t; }
  }
  return z.revert(r);
}

// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
  var z;
  if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
  return this.exp(e,z);
}

// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;

// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;

// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
//=============================
// prng4.js - uses Arcfour as a PRNG

function Arcfour() {
  this.i = 0;
  this.j = 0;
  this.S = new Array();
}

// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
  var i, j, t;
  for(i = 0; i < 256; ++i)
    this.S[i] = i;
  j = 0;
  for(i = 0; i < 256; ++i) {
    j = (j + this.S[i] + key[i % key.length]) & 255;
    t = this.S[i];
    this.S[i] = this.S[j];
    this.S[j] = t;
  }
  this.i = 0;
  this.j = 0;
}

function ARC4next() {
  var t;
  this.i = (this.i + 1) & 255;
  this.j = (this.j + this.S[this.i]) & 255;
  t = this.S[this.i];
  this.S[this.i] = this.S[this.j];
  this.S[this.j] = t;
  return this.S[(t + this.S[this.i]) & 255];
}

Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;

// Plug in your RNG constructor here
function prng_newstate() {
  return new Arcfour();
}

// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256;
//=============
var rng_psize = 256;
// Random number generator - requires a PRNG backend, e.g. prng4.js

// For best results, put code like
// <body onClick=‘rng_seed_time();‘ onKeyPress=‘rng_seed_time();‘>
// in your main HTML document.

var rng_state;
var rng_pool;
var rng_pptr;

// Mix in a 32-bit integer into the pool
function rng_seed_int(x) {
  rng_pool[rng_pptr++] ^= x & 255;
  rng_pool[rng_pptr++] ^= (x >> 8) & 255;
  rng_pool[rng_pptr++] ^= (x >> 16) & 255;
  rng_pool[rng_pptr++] ^= (x >> 24) & 255;
  if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
}

// Mix in the current time (w/milliseconds) into the pool
function rng_seed_time() {
  rng_seed_int(new Date().getTime());
}

// Initialize the pool with junk if needed.
if(rng_pool == null) {
  rng_pool = new Array();
  rng_pptr = 0;
  var t;
  if("navigator.appName" == "Netscape" && "navigator.appVersion" < "5" && window.crypto) {
    // Extract entropy (256 bits) from NS4 RNG if available
    var z = window.crypto.random(32);
    for(t = 0; t < z.length; ++t)
      rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
  }  
  while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
    t = Math.floor(65536 * Math.random());
    rng_pool[rng_pptr++] = t >>> 8;
    rng_pool[rng_pptr++] = t & 255;
  }
  rng_pptr = 0;
  rng_seed_time();
  //rng_seed_int(window.screenX);
  //rng_seed_int(window.screenY);
}

function rng_get_byte() {
  if(rng_state == null) {
    rng_seed_time();
    rng_state = prng_newstate();
    rng_state.init(rng_pool);
    for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
      rng_pool[rng_pptr] = 0;
    rng_pptr = 0;
    //rng_pool = null;
  }
  // TODO: allow reseeding after first request
  return rng_state.next();
}

function rng_get_bytes(ba) {
  var i;
  for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
}

function SecureRandom() {}

SecureRandom.prototype.nextBytes = rng_get_bytes;
//=============

function parseBigInt(str,r) {
  return new BigInteger(str,r);
}

function linebrk(s,n) {
  var ret = "";
  var i = 0;
  while(i + n < s.length) {
    ret += s.substring(i,i+n) + "\n";
    i += n;
  }
  return ret + s.substring(i,s.length);
}

function byte2Hex(b) {
  if(b < 0x10)
    return "0" + b.toString(16);
  else
    return b.toString(16);
}

// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s,n) {
  if(n < s.length + 11) { // TODO: fix for utf-8
    //alert("Message too long for RSA");
    return null;
  }
  var ba = new Array();
  var i = s.length - 1;
  while(i >= 0 && n > 0) {
    var c = s.charCodeAt(i--);
    if(c < 128) { // encode using utf-8
      ba[--n] = c;
    }
    else if((c > 127) && (c < 2048)) {
      ba[--n] = (c & 63) | 128;
      ba[--n] = (c >> 6) | 192;
    }
    else {
      ba[--n] = (c & 63) | 128;
      ba[--n] = ((c >> 6) & 63) | 128;
      ba[--n] = (c >> 12) | 224;
    }
  }
  ba[--n] = 0;
  var rng = new SecureRandom();
  var x = new Array();
  while(n > 2) { // random non-zero pad
    x[0] = 0;
    while(x[0] == 0) rng.nextBytes(x);
    ba[--n] = x[0];
  }
  ba[--n] = 2;
  ba[--n] = 0;
  return new BigInteger(ba);
}

// "empty" RSA key constructor
function RSAKey() {
  this.n = null;
  this.e = 0;
  this.d = null;
  this.p = null;
  this.q = null;
  this.dmp1 = null;
  this.dmq1 = null;
  this.coeff = null;
}

// Set the public key fields N and e from hex strings
function RSASetPublic(N,E) {
  if(N != null && E != null && N.length > 0 && E.length > 0) {
    this.n = parseBigInt(N,16);
    this.e = parseInt(E,16);
  }
  else
    alert("Invalid RSA public key");
}

// Perform raw public operation on "x": return x^e (mod n)
function RSADoPublic(x) {
  return x.modPowInt(this.e, this.n);
}

// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
function RSAEncrypt(text) {
  var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
  if(m == null) return null;
  var c = this.doPublic(m);
  if(c == null) return null;
  var h = c.toString(16);
  if((h.length & 1) == 0) return h; else return "0" + h;
}

// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
//function RSAEncryptB64(text) {
//  var h = this.encrypt(text);
//  if(h) return hex2b64(h); else return null;
//}

// protected
RSAKey.prototype.doPublic = RSADoPublic;

// public
RSAKey.prototype.setPublic = RSASetPublic;
RSAKey.prototype.encrypt = RSAEncrypt;
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad="=";

function hex2b64 (h) {
  var i;
  var c;
  var ret = "";
  for(i = 0; i+3 <= h.length; i+=3) {
    c = parseInt(h.substring(i,i+3),16);
    ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63);
  }
  if(i+1 == h.length) {
    c = parseInt(h.substring(i,i+1),16);
    ret += b64map.charAt(c << 2);
  }
  else if(i+2 == h.length) {
    c = parseInt(h.substring(i,i+2),16);
    ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4);
  }
  while((ret.length & 3) > 0) ret += b64pad;
  return ret;
}

// convert a base64 string to hex
function b64tohex(s) {
  var ret = ""
  var i;
  var k = 0; // b64 state, 0-3
  var slop;
  for(i = 0; i < s.length; ++i) {
    if(s.charAt(i) == b64pad) break;
    v = b64map.indexOf(s.charAt(i));
    if(v < 0) continue;
    if(k == 0) {
      ret += int2char(v >> 2);
      slop = v & 3;
      k = 1;
    }
    else if(k == 1) {
      ret += int2char((slop << 2) | (v >> 4));
      slop = v & 0xf;
      k = 2;
    }
    else if(k == 2) {
      ret += int2char(slop);
      ret += int2char(v >> 2);
      slop = v & 3;
      k = 3;
    }
    else {
      ret += int2char((slop << 2) | (v >> 4));
      ret += int2char(v & 0xf);
      k = 0;
    }
  }
  if(k == 1)
    ret += int2char(slop << 2);
  return ret;
}

// convert a base64 string to a byte/number array
function b64toBA(s) {
  //piggyback on b64tohex for now, optimize later
  var h = b64tohex(s);
  var i;
  var a = new Array();
  for(i = 0; 2*i < h.length; ++i) {
    a[i] = parseInt(h.substring(2*i,2*i+2),16);
  }
  return a;
}
View Code

http://www.bl.com/登录RSA加密,aaa(‘gfdhfghgfjh‘,‘AJZ98OTYCmfLuFt7HVjD94SLAfqd8rplwcwwcqbGxPJTVkRzMiyePJDCXkbm/h0yqdwIocPjgdzf+EwrCvjvg5ue9o03cqB7DKXv0ZMnT/n8O4NodikcTdX5aqOZSpT+pWBmnaAR2s5/Kbi9v3mFhGndTpfKFc10h68r3FJdGlnj‘,‘AQAB‘)

百联网上商城加密

标签:

原文地址:http://www.cnblogs.com/milest/p/5527903.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!