标签:

去除平均值计算协方差矩阵计算协方差矩阵的特征值和特征向量将特征值从大到小排序保留最上面的N个特征向量将数据转换到上述N个特征向量构建的新空间中
# 加载数据的函数def loadData(filename, delim = ‘\t‘):fr = open(filename)stringArr = [line.strip().split(delim) for line in fr.readlines()]datArr = [map(float,line) for line in stringArr]return mat(datArr)# =================================# 输入:dataMat:数据集# topNfeat:可选参数,需要应用的N个特征,可以指定,不指定的话就会返回全部特征# 输出:降维之后的数据和重构之后的数据# =================================def pca(dataMat, topNfeat=9999999):meanVals = mean(dataMat, axis=0)# axis = 0表示计算纵轴meanRemoved = dataMat - meanVals #remove meancovMat = cov(meanRemoved, rowvar=0)# 计算协方差矩阵eigVals,eigVects = linalg.eig(mat(covMat))# 计算特征值(eigenvalue)和特征向量eigValInd = argsort(eigVals) #sort, sort goes smallest to largesteigValInd = eigValInd[:-(topNfeat+1):-1] #cut off unwanted dimensionsredEigVects = eigVects[:,eigValInd] #reorganize eig vects largest to smallestlowDDataMat = meanRemoved * redEigVects#transform data into new dimensionsreconMat = (lowDDataMat * redEigVects.T) + meanValsreturn lowDDataMat, reconMat
filename = r‘E:\ml\machinelearninginaction\Ch13\testSet.txt‘dataMat = loadData(filename)lowD, reconM = pca(dataMat, 1)

def plotData(dataMat,reconMat):fig = plt.figure()ax = fig.add_subplot(111)# 绘制原始数据ax.scatter(dataMat[:, 0].flatten().A[0], dataMat[:,1].flatten().A[0], marker=‘^‘, s = 90)# 绘制重构后的数据ax.scatter(reconMat[:,0].flatten().A[0], reconMat[:,1].flatten().A[0], marker=‘o‘, s = 10, c=‘red‘)plt.show()
lowD, reconM = pca(dataMat, 2)
标签:
原文地址:http://www.cnblogs.com/mooba/p/5530577.html