标签:
已知: $\triangle{ABC}$ 中有一点 $P$, $\angle{PAB} = 10^{\circ}$, $\angle{PBA} = 20^{\circ}$, $\angle{PBC} = 40^{\circ}$, $\angle{PAC} = 70^{\circ}$.
求 $\angle{PCA}$ 之度数.
分析:
由 $60^{\circ}$ 考虑到构造正三角形 $\triangle{ABD}$, 并通过旋转变换构造正三角形 $\triangle{APE}$.
证明:
易知 $\triangle{ABD}, \triangle{APE}$ 均为正三角形, 及 $\triangle{APB}\cong\triangle{AED}$,
$\because\angle{EAD} = \angle{PAB} = 10^{\circ} = \angle{EAF}$, $\therefore$ 以 $AE$ 为对称轴翻折 $\triangle{AED}$ 至 $\triangle{AEF}$.
此时 $\angle{DEF} = 360^{\circ} - \angle{AED} - \angle{AEF} = 360^{\circ} - 150^{\circ} - 150^{\circ} = 60^{\circ}$, 及 $DE = DF$, $\Rightarrow\triangle{DEF}$ 是正三角形.
另一方面, $\angle{FDC} = 180^{\circ} - 60^{\circ} - 20^{\circ} - 60^{\circ} = 40^{\circ} = \angle{ACB}$, $\Rightarrow FD = FC$.
故 $FE = FC$ 且 $\angle{AFE} = 20^{\circ}\Rightarrow \angle{FCE} = 10^{\circ} = \angle{EAC} \Rightarrow EC = EA = EP \Rightarrow E$ 是 $\triangle{APC}$ 之外心.
$\therefore \angle{PCA} = \displaystyle{1\over2} \angle{AEP} = 30^{\circ}$.
Q$\cdot$E$\cdot$D
标签:
原文地址:http://www.cnblogs.com/zhaoyin/p/5536727.html