标签:
输入n个整数,输出其中最小的k个。
要求一个序列中最小的k个数,按照惯有的思维方式,则是先对这个序列从小到大排序,然后输出前面的最小的k个数。
至于选取什么的排序方法,我想你可能会第一时间想到快速排序(我们知道,快速排序平均所费时间为n*logn
),然后再遍历序列中前k个元素输出即可。因此,总的时间复杂度:O(n * log n)+O(k)=O(n * log n)
。
咱们再进一步想想,题目没有要求最小的k个数有序,也没要求最后n-k个数有序。既然如此,就没有必要对所有元素进行排序。这时,咱们想到了用选择或交换排序,即:
1、遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数;
2、对这k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为O(k)
);
3、继续遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果x < kmax
,用x替换kmax,并回到第二步重新找出k个元素的数组中最大元素kmax‘;如果x >= kmax
,则继续遍历不更新数组。
每次遍历,更新或不更新数组的所用的时间为O(k)
或O(0)
。故整趟下来,时间复杂度为n*O(k)=O(n*k)
。
void select_sortN(vector<int> &vec, int n) { int size = vec.size(); for(int i = 0; i < n; ++i) { int k = i; for(int j = i; j < size; ++j) { if(vec[k] > vec[j]) { k = j; } } swap(vec[k], vec[i]); } }
更好的办法是维护容量为k的最大堆,原理跟解法二的方法相似:
x < kmax
,用x替换kmax,然后更新堆(用时logk);否则不更新堆。这样下来,总的时间复杂度:O(k+(n-k)*logk)=O(n*logk)
。此方法得益于堆中进行查找和更新的时间复杂度均为:O(logk)
(若使用解法二:在数组中找出最大元素,时间复杂度:O(k))
。
void heap_sortN(vector<int> &vec, vector<int> &res, int n) { for(int i = 0; i != n; ++i) { make_heap(vec.begin(), vec.end(), [](int i, int j){return i > j;}); res.push_back(*vec.begin()); vec.erase(vec.begin()); } }
在《数据结构与算法分析--c语言描述》一书,第7章第7.7.6节中,阐述了一种在平均情况下,时间复杂度为O(N)
的快速选择算法。如下述文字:
此算法的平均运行时间为O(n)。
这个快速选择SELECT算法,类似快速排序的划分方法。N个数存储在数组S中,再从数组中选取“中位数的中位数”作为枢纽元X,把数组划分为Sa和Sb俩部分,Sa<=X<=Sb,如果要查找的k个元素小于Sa的元素个数,则返回Sa中较小的k个元素,否则返回Sa中所有元素+Sb中小的k-|Sa|个元素,这种解法在平均情况下能做到O(n)
的复杂度。
更进一步,《算法导论》第9章第9.3节介绍了一个最坏情况下亦为O(n)时间的SELECT算法,有兴趣的读者可以参看。
1、谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?
分析:
“假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素。
那么可以把这些和看成N个有序数列:
A[1]+B[1] <= A[1]+B[2] <= A[1]+B[3] <=…
A[2]+B[1] <= A[2]+B[2] <= A[2]+B[3] <=…
…
A[N]+B[1] <= A[N]+B[2] <= A[N]+B[3] <=…
问题转变成,在这N^2个有序数列里,找到前k小的元素”
2、有两个序列A和B,A=(a1,a2,...,ak),B=(b1,b2,...,bk),A和B都按升序排列。对于1<=i,j<=k,求k个最小的(ai+bj)。要求算法尽量高效。
3、给定一个数列a1,a2,a3,...,an和m个三元组表示的查询,对于每个查询(i,j,k),输出ai,ai+1,...,aj的升序排列中第k个数。
标签:
原文地址:http://www.cnblogs.com/ddddddwwwxx/p/5539423.html