码迷,mamicode.com
首页 > 其他好文 > 详细

(背包)剪辑的别人写的背包文章,转到自己博客上供以后学习使用

时间:2014-08-02 15:26:53      阅读:336      评论:0      收藏:0      [点我收藏+]

标签:des   style   blog   http   使用   os   strong   io   

 

背包问题——“完全背包”详解及实现(包含背包具体物品的求解)

分类: 背包问题2011-11-26 16:23 5820人阅读 评论(3) 收藏 举报

pathtable算法c优化delete

-----Edit by ZhuSenlin HDU

        完全背包是在N物品中选取若干件(同一种物品可多次选取)放在空间为V的背包里,每物品的体积为C1,C2,…,Cn,与之相对应的价值为W1,W2,…,Wn.求解怎么装物品可使背包里物品总价值最大。

动态规划(DP):

        1) 子问题定义:F[i][j]表示前i物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。

        2) 根据第i物品放多少件进行决策

                                      (2-1)

        其中F[i-1][j-K*C[i]]+K*W[i]表示前i-1物品中选取若干件物品放入剩余空间为j-K*C[i]的背包中所能得到的最大价值加上k件第i物品;

       设物品种数为N,背包容量为V,第i物品体积为C[i],第i物品价值为W[i]。

       与01背包相同,完全背包也需要求出NV个状态F[i][j]。但是完全背包求F[i][j]时需要对k分别取0,…,j/C[i]求最大F[i][j]值,耗时为j/C[i]。那么总的时间复杂度为O(NV∑(j/C[i]))

由此写出伪代码如下:

[cpp] view plaincopy

  1. F[0][] ← {0}  
  2.   
  3. F[][0] ← {0}  
  4.   
  5. for i←1 to N  
  6.   
  7.     do for j←1 to V  
  8.   
  9.         do for k←0 to j/C[i]  
  10. 10.   
  11. 11.            if(j >= k*C[i])  
  12. 12.   
  13. 13.                 then F[i][k] ← max(F[i][k],F[i-1][j-k*C[i]]+k*W[i])  
  14. 14.   

15. return F[N][V]  

以上伪代码数组均为基于1索引,即第一件物品索引为1。空间复杂度O(VN)、时间复杂度为O(NV∑(j/C[i]))

        简单优化:

        若两件物品满足C[i] ≤C[j]&&W[i] ≥W[j]时将第j种物品直接筛选掉。因为第i种物品比第j种物品物美价廉,用i替换j得到至少不会更差的方案。

       这个筛选过程如下:先找出体积大于背包的物品直接筛掉一部分(也可能一种都筛不掉)复杂度O(N)。利用计数排序思想对剩下的物品体积进行排序,同时筛选出同体积且价值最大的物品留下,其余的都筛掉(这也可能一件都筛不掉)复杂度O(V)。整个过程时间复杂度为O(N+V)

 

       转化为01背包:

       因为同种物品可以多次选取,那么第i种物品最多可以选取V/C[i]件价值不变的物品,然后就转化为01背包问题。整个过程的时间复杂度并未减少。如果把第i种物品拆成体积为C[i]×2k价值W[i]×2k的物品,其中满足C[i]×2k≤V。那么在求状态F[i][j]时复杂度就变为O(log2(V/C[i]))。整个时间复杂度就变为O(NVlog2(V/C[i]))

 

时间复杂度优化为O(NV)

将原始算法的DP思想转变一下。

F[i][j]表示出在前i种物品中选取若干件物品放入容量为j的背包所得的最大价值。那么对于第i种物品的出现,我们对第i种物品放不放入背包进行决策。如果不放那么F[i][j]=F[i-1][j];如果确定放,背包中应该出现至少一件第i种物品,所以F[i][j]种至少应该出现一件第i种物品,F[i][j]=F[i][j-C[i]]+W[i]。为什么会是F[i][j-C[i]]+W[i]?因为F[i][j-C[i]]里面可能有第i种物品,也可能没有第i种物品。我们要确保F[i][j]至少有一件第i件物品,所以要预留C[i]的空间来存放一件第i种物品。

状态方程为:

                            (2-2)

伪代码为:

[cpp] view plaincopy

  1. F[0][] ← {0}  
  2.   
  3. F[][0] ← {0}  
  4.   
  5. for i←1 to N  
  6.   
  7.     do for j←1 to V  
  8.   
  9.         F[i][j] ← F[i-1][j]  
  10. 10.   
  11. 11.         if(j >= C[i])  
  12. 12.   
  13. 13.             then F[i][j] ← max(F[i][j],F[i][j-C[i]]+ W[i])  
  14. 14.   

15. return F[N][V]  

        具体背包中放入那些物品的求法和01背包情况差不多,从F[N][V]逆着走向F[0][0],设i=N,j=V,如果F[i][j]==F[i][j-C[i]]+W[i]说明包里面有第i件物品,同时j -= C[i]。完全背包问题在处理i自减和01背包不同,01背包是不管F[i][j]与F[i-1][j-C[i]]+W[i]相不相等i都要减1,因为01背包的第i件物品要么放要么不放,不管放还是不放其已经遍历过了,需要继续往下遍历而完全背包只有当F[i][j]与F[i-1][j]相等时i才自减1。因为F[i][j]=F[i-1][j]说明背包里面不会含有i,也就是说对于前i种物品容量为j的背包全部都放入前i-1种物品才能实现价值最大化,或者直白的理解为前i种物品中第i种物品物不美价不廉,直接被筛选掉。

        打印背包内物品的伪代码如下:

[cpp] view plaincopy

  1. i←N  
  2.   
  3. j←V  
  4.   
  5. while(i>0 && j>0)  
  6.   
  7.      do if(F[i][j]=F[i][j-C[i]]+W[i])  
  8.   
  9.           then Print W[i]  
  10. 10.   
  11. 11.                j←j-C[i]  
  12. 12.   
  13. 13.         else  
  14. 14.   
  15. 15.           i←i-1  

        和01背包一样,也可以利用一个二维数组Path[][]来标记背包中的物品。开始时Path[N][V]初始化为0,当 F[i][j]==F[i][j-C[i]]+W[i]时Path[i][j]置1。最后通过从Path[N+1][V+1]逆着走向Path[0][0]来获取背包内物品。其中Path[0][]与Path[][0]为边界。同样,在打印路径的时候当Path[][]=1时,打印W[i];Path[][]=0时i自减1.

       加入路径信息的伪代码如下:

[cpp] view plaincopy

  1. F[0][] ← {0}  
  2.   
  3. F[][0] ← {0}  
  4.   
  5. Path[][] ← 0  
  6.   
  7. for i←1 to N  
  8.   
  9.     do for k←1 to V  
  10. 10.   
  11. 11.         F[i][k] ← F[i-1][k]  
  12. 12.   
  13. 13.         if(k >= C[i] && F[i][k] < F[i][k-C[i]]+W[i])  
  14. 14.   
  15. 15.             then F[i][k] ← F[i][k-C[i]]+W[i]  
  16. 16.   
  17. 17.                  Path[i][k] ← 1  
  18. 18.   

19. return F[N][V] and Path[][]  

打印背包内物品的伪代码如下:

[cpp] view plaincopy

  1. i←N  
  2.   
  3. j←V  
  4.   
  5. while(i>0 && j>0)  
  6.   
  7.      do if(Path[i][j]=1)  
  8.   
  9.           then Print W[i]  
  10. 10.   
  11. 11.                j←j-C[i]  
  12. 12.   
  13. 13.         else  
  14. 14.   
  15. 15.           i←i-1  

优化空间复杂度为OV

        和01背包问题一样,完全背包也可以用一维数组来保存数据。算法样式和01背包的很相似,唯一不同的是对V遍历时变为正序,而01背包为逆序。01背包中逆序是因为F[i][]只和F[i-1][]有关,且第i的物品加入不会对F[i-1][]状态造成影响。而完全背包则考虑的是第i物品的出现的问题,第i种物品一旦出现它势必应该对第i种物品还没出现的各状态造成影响。也就是说,原来没有第i种物品的情况下可能有一个最优解,现在第i种物品出现了,而它的加入有可能得到更优解,所以之前的状态需要进行改变,故需要正序。

状态方程为:

                           (2-3)

 

伪代码如下:

[cpp] view plaincopy

  1. F[] = {0}  
  2.   
  3. for i←1 to N  
  4.   
  5.     do for k←C[i] to V  
  6.   
  7.         F[k] ← max(F[k],F[k-C[i]]+W[i])  
  8.   
  9. return F[V]  

        具体背包中放入那些物品的求法和上面空间复杂度为O(NV)算法一样,用一个Path[][]记录背包信息。但这里面是当F[i]=F[i-C[i]]+W[i]时将Path置1.

        伪代码如下:

[cpp] view plaincopy

  1. F[0][] = {0}  
  2.   
  3. F[][0] = {0}  
  4.   
  5. Path[][] ← 0  
  6.   
  7. for i←1 to N  
  8.   
  9.     do for k←C[i] to V  
  10. 10.   
  11. 11.         if(F[i] < F[k-C[i]]+W[i])  
  12. 12.   
  13. 13.             then F[i] ← F[k-C[i]]+W[i]  
  14. 14.   
  15. 15.                  Path[i][k] ← 1  
  16. 16.   

17. return F[N][V] and Path[][]  

        打印路径的伪代码和前面未压缩空间复杂度时的伪代码一样,这里不再重写。

 

         举例:表2-1为一个背包问题数据表,设背包容量为10根据上述解决方法可得到对应的F[i][j]如表2-2所示,最大价值即为F[6][10].

表2-1背包问题数据表

物品号i

1

2

3

4

5

6

体积C

3

2

5

1

6

4

价值W

6

5

10

2

16

8

 

表2-2前i件物品选若干件放入空间为j的背包中得到的最大价值表

 

0

1

2

3

4

5

6

7

8

9

10

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

6

6

6

12

12

12

18

18

2

0

0

5

6

10

11

15

16

20

21

25

3

0

0

5

6

10

11

15

16

20

21

25

4

0

2

5

7

10

12

15

17

20

22

25

5

0

2

5

7

10

12

16

18

21

23

26

6

0

2

5

7

10

12

16

18

21

23

26

 下面针对前面提到的表2-1提供两种方法的测试代码:

 

  1. #include <iostream>  
  2. #include <cstring>  
  3. #include "CreateArray.h"        //该头文件用于二维数组的创建及销毁,读者自己实现  
  4.   
  5. using namespace std;  

 

//时间复杂度O(VN),空间复杂度为O(VN)

 

  1. int Package02(int Weight[], int Value[], int nLen, int nCapacity)  
  2. {  
  3.     int** Table = NULL;  
  4.     int** Path = NULL;  
  5.     CreateTwoDimArray(Table,nLen+1,nCapacity+1);    //创建二维数组  
  6.     CreateTwoDimArray(Path,nLen+1,nCapacity+1); //创建二维数组  
  7.       
  8.     for(int i = 1; i <= nLen; i++)  
  9.     {  
  10. 10.         for(int j = 1; j <= nCapacity; j++)  
  11. 11.         {  
  12. 12.             Table[i][j] = Table[i-1][j];  
  13. 13.             if(j >= Weight[i-1] && Table[i][j] < Table[i][j-Weight[i-1]]+Value[i-1])  
  14. 14.             {  
  15. 15.                 Table[i][j] = Table[i][j-Weight[i-1]]+Value[i-1];  
  16. 16.                 Path[i][j]=1;  
  17. 17.             }  
  18. 18.         }  
  19. 19.     }  
  20. 20.   
  21. 21.     int i = nLen, j = nCapacity;  
  22. 22.     while(i > 0 && j > 0)  
  23. 23.     {  
  24. 24.         if(Path[i][j] == 1)  
  25. 25.         {  
  26. 26.             cout << Weight[i-1] << " ";  
  27. 27.             j -= Weight[i-1];  
  28. 28.         }  
  29. 29.         else  
  30. 30.             i--;  
  31. 31.     }  
  32. 32.     cout << endl;  
  33. 33.   
  34. 34.     int nRet = Table[nLen][nCapacity];  
  35. 35.     DestroyTwoDimArray(Table,nLen+1);   //销毁二维数组  
  36. 36.     DestroyTwoDimArray(Path,nLen+1);    //销毁二维数组  
  37. 37.     return nRet;  

38. }  


//时间复杂度O(VN),不考虑路径空间复杂度为O(V),考虑路径空间复杂度为O(VN)

 

  1. int Package02_Compress(int Weight[], int Value[], int nLen, int nCapacity)  
  2. {  
  3.     int * Table = new int [nCapacity+1];  
  4.     memset(Table,0,(nCapacity+1)*sizeof(int));  
  5.   
  6.     int** Path = NULL;  
  7.     CreateTwoDimArray(Path,nLen+1,nCapacity+1);     //创建二维数组  
  8.   
  9.     for(int i = 0; i < nLen; i++)  
  10. 10.     {  
  11. 11.         for(int j = Weight[i]; j <=nCapacity; j++)  
  12. 12.         {  
  13. 13.             if(Table[j] < Table[j-Weight[i]]+Value[i])  
  14. 14.             {  
  15. 15.                 Table[j] = Table[j-Weight[i]]+Value[i];  
  16. 16.                 Path[i+1][j] = 1;  
  17. 17.             }  
  18. 18.         }     
  19. 19.     }  
  20. 20.   
  21. 21.     int i = nLen, j = nCapacity;  
  22. 22.     while(i > 0 && j > 0)  
  23. 23.     {  
  24. 24.         if(Path[i][j] == 1)  
  25. 25.         {  
  26. 26.             cout << Weight[i-1] << " ";  
  27. 27.             j -= Weight[i-1];  
  28. 28.         }  
  29. 29.         else  
  30. 30.             i--;  
  31. 31.     }  
  32. 32.     cout << endl;  
  33. 33.   
  34. 34.     int nRet = Table[nCapacity];      
  35. 35.     DestroyTwoDimArray(Path,nLen+1);    //销毁二维数组  
  36. 36.     delete [] Table;  
  37. 37.     return nRet;  

38. }  


测试代码:

  1. int main()  
  2. {  
  3.     int Weight[] = {3,2,5,1,6,4};  
  4.     int Value[] =  {6,5,10,2,16,8};  
  5.     int nCapacity = 10;  
  6.     cout << Package02(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;  
  7.     cout << Package02_Compress(Weight,Value,sizeof(Weight)/sizeof(int),nCapacity) << endl;  
  8.     return 0;  
  9. }  


本文部分内容参考“背包九讲”

 

                                        背包之01背包、完全背包、多重背包详解

 

PS:大家觉得写得还过得去,就帮我把博客顶一下,谢谢。

首先说下动态规划,动态规划这东西就和递归一样,只能找局部关系,若想全部列出来,是很难的,比如汉诺塔。你可以说先把除最后一层的其他所有层都移动到2,再把最后一层移动到3,最后再把其余的从2移动到3,这是一个直观的关系,但是想列举出来是很难的,也许当层数n=3时还可以模拟下,再大一些就不可能了,所以,诸如递归,动态规划之类的,不能细想,只能找局部关系。

 

 

 

 

1.汉诺塔图片

(引至杭电课件:DP最关键的就是状态,在DP时用到的数组时,也就是存储的每个状态的最优值,也就是记忆化搜索)

要了解背包,首先得清楚动态规划:

动态规划算法可分解成从先到后的4个步骤:

1. 描述一个最优解的结构;

2. 递归地定义最优解的值;

3. 以“自底向上”的方式计算最优解的值;

4. 从已计算的信息中构建出最优解的路径。

其中步骤1~3是动态规划求解问题的基础。如果题目只要求最优解的值,则步骤4可以省略。

背包的基本模型就是给你一个容量为V的背包

在一定的限制条件下放进最多(最少?)价值的东西

当前状态→ 以前状态

看了dd大牛的《背包九讲》(点击下载),迷糊中带着一丝清醒,这里我也总结下01背包,完全背包,多重背包这三者的使用和区别,部分会引用dd大牛的《背包九讲》,如果有错,欢迎指出。

(www.wutianqi.com留言即可)

首先我们把三种情况放在一起来看:

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

比较三个题目,会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。

——————————————————————————————————————————————————————————–

先来分析01背包

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

把这个过程理解下:在前i件物品放进容量v的背包时,

它有两种情况:

第一种是第i件不放进去,这时所得价值为:f[i-1][v]

第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

(这是基础,要理解!)

这里是用二位数组存储的,可以把空间优化,用一位数组存储。

f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i1~n(n)循环后,最后f[v]表示所求最大值。

*这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考)
首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N
现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?

逆序!

这就是关键!

 

1

2

3

for i=1..N

   for v=V..0

        f[v]=max{f[v],f[v-c[i]]+w[i]};

 

 

 

分析上面的代码:当内循环是逆序时,就可以保证后一个f[v]和f[v-c[i]]+w[i]是前一状态的!
这里给大家一组测试数据:

测试数据:
10,3
3,4
4,5
5,6

 

 

 

 

这个图表画得很好,借此来分析:

C[v]从物品i=1开始,循环到物品3,期间,每次逆序得到容量v在前i件物品时可以得到的最大值。(请在草稿纸上自己画一画)

这里以一道题目来具体看看:

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2602

代码在这里:http://www.wutianqi.com/?p=533

分析:

 

具体根据上面的解释以及我给出的代码分析。这题很基础,看懂上面的知识应该就会做了。

——————————————————————————————————————————————————————————–

完全背包:

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

完全背包按其思路仍然可以用一个二维数组来写出:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

同样可以转换成一维数组来表示:

伪代码如下:

 

1

2

3

for i=1..N

    for v=0..V

        f[v]=max{f[v],f[v-c[i]]+w[i]}

 

 

 

 

 

顺序!

想必大家看出了和01背包的区别,这里的内循环是顺序的,而01背包是逆序的。
现在关键的是考虑:为何完全背包可以这么写?
在次我们先来回忆下,01背包逆序的原因?是为了是max中的两项是前一状态值,这就对了。
那么这里,我们顺序写,这里的max中的两项当然就是当前状态的值了,为何?
因为每种背包都是无限的。当我们把i从1到N循环时,f[v]表示容量为v在前i种背包时所得的价值,这里我们要添加的不是前一个背包,而是当前背包。所以我们要考虑的当然是当前状态。
这里同样给大家一道题目:

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1114

代码:http://www.wutianqi.com/?p=535

(分析代码也是学习算法的一种途径,有时并不一定要看算法分析,结合题目反而更容易理解。)

——————————————————————————————————————————————————————————–

多重背包

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

这里同样转换为01背包:

普通的转换对于数量较多时,则可能会超时,可以转换成二进制(暂时不了解,所以先不讲)

对于普通的。就是多了一个中间的循环,把j=0~bag[i],表示把第i中背包从取0件枚举到取bag[i]件。

给出一个例题:

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2191

代码:http://www.wutianqi.com/?p=537

因为限于个人的能力,我只能讲出个大概,请大家具体还是好好看看dd大牛的《背包九讲》。

暂时讲完后,随着以后更深入的了解,我会把资料继续完善,供大家一起学习探讨。(我的博客:www.wutianqi.com如果大家有问题或者资料里的内容有错误,可以留言给出,谢谢您的支持。)

原文下载地址:(Word版)
http://download.csdn.net/source/2587577

 

(背包)剪辑的别人写的背包文章,转到自己博客上供以后学习使用,布布扣,bubuko.com

(背包)剪辑的别人写的背包文章,转到自己博客上供以后学习使用

标签:des   style   blog   http   使用   os   strong   io   

原文地址:http://www.cnblogs.com/yspworld/p/3886998.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!