标签:des style blog http color java os strong
解题报告
http://blog.csdn.net/juncoder/article/details/38349019
题目传送门
题意:
有N个点,点1为珍贵矿物的采矿区, 点N为加工厂,有M条双向连通的边连接这些点。走每条边的运输容量为C,运送时间为D。
他们要选择一条从1到N的路径运输, 这条路径的运输总时间要在T之内,在这个前提之下,要让这条路径的运输容量尽可能地大。
一条路径的运输容量取决与这条路径中的运输容量最小的那条边。
思路:
二分容量建图,spfa判时间是否符合条件
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define inf 99999999
using namespace std;
int n,m,T;
struct node {
int u,v,w,t,next;
} edge[501000],N[101000];
int head[101000],cnt;
void add(int u,int v,int w)
{
edge[cnt].v=v;
edge[cnt].t=w;
edge[cnt].next=head[u];
head[u]=cnt++;
}
int spfa()
{
int i,j,dis[10100],vis[10100];
for(i=1; i<=n; i++) {
dis[i]=inf;
vis[i]=0;
}
dis[1]=0;
vis[1]=1;
queue<int>Q;
Q.push(1);
while(!Q.empty()) {
int u=Q.front();
Q.pop();
vis[u]=0;
for(i=head[u]; i!=-1; i=edge[i].next) {
if(dis[edge[i].v]>dis[u]+edge[i].t) {
dis[edge[i].v]=dis[u]+edge[i].t;
if(!vis[edge[i].v]) {
vis[edge[i].v]=1;
Q.push(edge[i].v);
}
}
}
}
if(dis[n]<=T)
return 1;
return 0;
}
int slove(int mid)
{
memset(edge,0,sizeof(edge));
memset(head,-1,sizeof(head));
cnt=0;
for(int i=1; i<=m; i++) {
if(N[i].w>=mid) {
add(N[i].u,N[i].v,N[i].t);
add(N[i].v,N[i].u,N[i].t);
}
}
if(spfa())return 1;
return 0;
}
int main()
{
int tt,i,j;
scanf("%d",&tt);
while(tt--) {
memset(N,0,sizeof(N));
scanf("%d%d%d",&n,&m,&T);
int l=0,r=-1;
for(i=1; i<=m; i++) {
scanf("%d%d%d%d",&N[i].u,&N[i].v,&N[i].w,&N[i].t);
if(N[i].w>r)
r=N[i].w;
}
int maxx=-1;
while(l<=r) {
int mid=(l+r)/2;
if(slove(mid)) {
l=mid+1;
maxx=mid;
} else r=mid-1;
}
printf("%d\n",maxx);
}
return 0;
}
Delay Constrained Maximum Capacity Path
Time Limit: 10000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1035 Accepted Submission(s): 318
Problem Description
Consider an undirected graph with N vertices, numbered from 1 to N, and M edges. The vertex numbered with 1 corresponds to a mine from where some precious minerals are extracted. The vertex numbered with N corresponds to a minerals processing factory. Each
edge has an associated travel time (in time units) and capacity (in units of minerals). It has been decided that the minerals which are extracted from the mine will be delivered to the factory using a single path. This path should have the highest capacity
possible, in order to be able to transport simultaneously as many units of minerals as possible. The capacity of a path is equal to the smallest capacity of any of its edges. However, the minerals are very sensitive and, once extracted from the mine, they
will start decomposing after T time units, unless they reach the factory within this time interval. Therefore, the total travel time of the chosen path (the sum of the travel times of its edges) should be less or equal to T.
Input
The first line of input contains an integer number X, representing the number of test cases to follow. The first line of each test case contains 3 integer numbers, separated by blanks: N (2 <= N <= 10.000), M (1 <= M <= 50.000) and T (1 <= T <= 500.000). Each
of the next M lines will contain four integer numbers each, separated by blanks: A, B, C and D, meaning that there is an edge between vertices A and B, having capacity C (1 <= C <= 2.000.000.000) and the travel time D (1 <= D <= 50.000). A and B are different
integers between 1 and N. There will exist at most one edge between any two vertices.
Output
For each of the X test cases, in the order given in the input, print one line containing the highest capacity of a path from the mine to the factory, considering the travel time constraint. There will always exist at least one path between the mine and the
factory obbeying the travel time constraint.
Sample Input
2
2 1 10
1 2 13 10
4 4 20
1 2 1000 15
2 4 999 6
1 3 100 15
3 4 99 4
Sample Output
HDU1839_Delay Constrained Maximum Capacity Path(最短路+二分),布布扣,bubuko.com
HDU1839_Delay Constrained Maximum Capacity Path(最短路+二分)
标签:des style blog http color java os strong
原文地址:http://blog.csdn.net/juncoder/article/details/38349019