码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 2096:Collecting Bugs 概率DP求期望

时间:2016-06-03 21:31:06      阅读:243      评论:0      收藏:0      [点我收藏+]

标签:

Collecting Bugs

题目连接:

http://poj.org/problem?id=2096

题意:

Ivan喜欢收集bug,他每天都会找到一个bug,找到的这个bug有一种属性并且属于一个子系统,bug共有n种属性,子系统共有s个 (0<n, s≤1000),求Ivan集齐了n种bug且每个子系统都有bug的期望。

题解:

第一道求期望的题,令dp[i][j]表示系统已经有了i个系统的全部j种bug并且要得到所有bug的天数的期望,因此dp[n][s]=0,而dp[0][0]则是所求答案。

dp[i][j]到下一天会有四种情况dp[i][j](找到了一个已有的bug且bug所属的子系统已有bug),dp[i+1][j](找到了一个新bug但bug所属的子系统已有bug),dp[i][j+1](找到了一个已有的bug但是bug存在的系统在此之前还没有bug),dp[i+1][j+1](找到了一个新bug且bug所属的子系统在此之前还没有bug)。

得到这四种情况的概率分别为:

          p1=i*j/(n*s);

          p2=(n-i)*j/(n*s);

          p3=i*(s-j)/(n*s);

          p4=(n-i)*(s-h)/(n*s);

由期望的线性性质可以知道dp[i][j]=p1*dp[i][j]+p2*dp[i+1][j]+p3*dp[i][j+1]+p4*dp[i+1][j+1];由于是下一天,所以dp[i][j]还要加上1。

              

代码

#include<stdio.h>
const int N=1002;
double dp[N][N],p1,p2,p3,p4,ns;
int main()
{
	int n,s;
	while(~scanf("%d%d",&n,&s))
	{
		ns=n*s;
		dp[n][s]=0.0;
		for(int i=n;i>=0;--i)
		for(int j=s;j>=0;--j)
		if(i!=n||j!=s)
		{
			p1=i*j/(ns);
			p2=(n-i)*j/(ns);
			p3=i*(s-j)/(ns);
			p4=(n-i)*(s-j)/(ns);  
			dp[i][j]=(1.0+p2*dp[i+1][j]+p3*dp[i][j+1]+p4*dp[i+1][j+1])/(1.0-p1);
		}printf("%.4f\n",dp[0][0]);
	}
}

  

POJ 2096:Collecting Bugs 概率DP求期望

标签:

原文地址:http://www.cnblogs.com/kiuhghcsc/p/5557483.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!