标签:
最近有同学问道,除了使用 Storm 充当实时计算的模型外,还有木有其他的方式来实现实时计算的业务。了解到,在使用 Storm 时,需要编写基于编程语言的代码。比如,要实现一个流水指标的统计,需要去编写相应的业务代码,能不能有一种简便的方式来实现这一需求。在解答了该同学的疑惑后,整理了该实现方案的一个案例,供后面的同学学习参考。
实现该方案,整体的流程是不变的,我这里只是替换了其计算模型,将 Storm 替换为 Spark,原先的数据收集,存储依然可以保留。
Spark 出来也是很久了,说起它,应该并不会陌生。它是一个开源的类似于 Hadoop MapReduce 的通用并行计算模型,它拥有 Hadoop MapReduce 所具有的有点,但与其不同的是,MapReduce 的 JOB 中间输出结果可以保存在内存中,不再需要回写磁盘,因而,Spark 能更好的适用于需要迭代的业务场景。
上面只是对 Spark 进行了一个简要的概述,让大家知道其作用,由于本篇博客的主要内容并不是讲述 Spark 的工作原理和计算方法,多的内容,这里笔者酒不再赘述,若是大家想详细了解 Spark 的相关内容,可参考官方文档。[参考地址]
接下来,笔者为大家呈现本案例的一个实现流程图,如下图所示:
通过上图,我们可以看出,首先是采集上报的日志数据,将其存放于消息中间件,这里消息中间件采用的是 Kafka,然后在使用计算模型按照业务指标实现相应的计算内容,最后是将计算后的结果进行持久化,DB 的选择可以多样化,这里笔者就直接使用了 Redis 来作为演示的存储介质,大家所示在使用中,可以替换该存储介质,比如将结果存放到 HDFS,HBase Cluster,或是 MySQL 等都行。这里,我们使用 Spark SQL 来替换掉 Storm 的业务实现编写。
在介绍完上面的内容后,我们接下来就去实现该内容,首先我们要生产数据源,实际的场景下,会有上报好的日志数据,这里,我们就直接写一个模拟数据类,实现代码如下所示:
object KafkaEventProducer { private val uid = Array("123dfe", "234weq","213ssf") private val random = new Random() private var pointer = -1 def getUserID(): String = { pointer = pointer + 1 if (pointer >= users.length) { pointer = 0 uid(pointer) } else { uid(pointer) } } def plat(): String = { random.nextInt(10) + "10" } def ip(): String = { random.nextInt(10) + ".12.1.211" } def country(): String = { "中国" + random.nextInt(10) } def city(): String = { "深圳" + random.nextInt(10) } def location(): JSONArray = { JSON.parseArray("[" + random.nextInt(10) + "," + random.nextInt(10) + "]") } def main(args: Array[String]): Unit = { val topic = "test_data3" val brokers = "dn1:9092,dn2:9092,dn3:9092" val props = new Properties() props.put("metadata.broker.list", brokers) props.put("serializer.class", "kafka.serializer.StringEncoder") val kafkaConfig = new ProducerConfig(props) val producer = new Producer[String, String](kafkaConfig) while (true) { val event = new JSONObject() event .put("_plat", "1001") .put("_uid", "10001") .put("_tm", (System.currentTimeMillis / 1000).toString()) .put("ip", ip) .put("country", country) .put("city", city) .put("location", JSON.parseArray("[0,1]")) println("Message sent: " + event) producer.send(new KeyedMessage[String, String](topic, event.toString)) event .put("_plat", "1001") .put("_uid", "10001") .put("_tm", (System.currentTimeMillis / 1000).toString()) .put("ip", ip) .put("country", country) .put("city", city) .put("location", JSON.parseArray("[0,1]")) println("Message sent: " + event) producer.send(new KeyedMessage[String, String](topic, event.toString)) event .put("_plat", "1001") .put("_uid", "10002") .put("_tm", (System.currentTimeMillis / 1000).toString()) .put("ip", ip) .put("country", country) .put("city", city) .put("location", JSON.parseArray("[0,1]")) println("Message sent: " + event) producer.send(new KeyedMessage[String, String](topic, event.toString)) event .put("_plat", "1002") .put("_uid", "10001") .put("_tm", (System.currentTimeMillis / 1000).toString()) .put("ip", ip) .put("country", country) .put("city", city) .put("location", JSON.parseArray("[0,1]")) println("Message sent: " + event) producer.send(new KeyedMessage[String, String](topic, event.toString)) Thread.sleep(30000) } } }
上面代码,通过 Thread.sleep() 来控制数据生产的速度。接下来,我们来看看如何实现每个用户在各个区域所分布的情况,它是按照坐标分组,平台和用户ID过滤进行累加次数,逻辑用 SQL 实现较为简单,关键是在实现过程中需要注意的一些问题,比如对象的序列化问题。这里,细节的问题,我们先不讨论,先看下实现的代码,如下所示:
object UserClickCountAnalytics { def main(args: Array[String]): Unit = { val sdf = new SimpleDateFormat("yyyyMMdd") var masterUrl = "local[2]" if (args.length > 0) { masterUrl = args(0) } // Create a StreamingContext with the given master URL val conf = new SparkConf().setMaster(masterUrl).setAppName("IPLoginCountStat") val ssc = new StreamingContext(conf, Seconds(5)) // Kafka configurations val topics = Set("test_data3") val brokers = "dn1:9092,dn2:9092,dn3:9092" val kafkaParams = Map[String, String]( "metadata.broker.list" -> brokers, "serializer.class" -> "kafka.serializer.StringEncoder") val ipLoginHashKey = "mf::ip::login::" + sdf.format(new Date()) // Create a direct stream val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics) val events = kafkaStream.flatMap(line => { val data = JSONObject.fromObject(line._2) Some(data) }) def func(iter: Iterator[(String, String)]): Unit = { while (iter.hasNext) { val item = iter.next() println(item._1 + "," + item._2) } } events.foreachRDD { rdd => // Get the singleton instance of SQLContext val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext) import sqlContext.implicits._ // Convert RDD[String] to DataFrame val wordsDataFrame = rdd.map(f => Record(f.getString("_plat"), f.getString("_uid"), f.getString("_tm"), f.getString("country"), f.getString("location"))).toDF() // Register as table wordsDataFrame.registerTempTable("events") // Do word count on table using SQL and print it val wordCountsDataFrame = sqlContext.sql("select location,count(distinct plat,uid) as value from events where from_unixtime(tm,‘yyyyMMdd‘) = ‘" + sdf.format(new Date()) + "‘ group by location") var results = wordCountsDataFrame.collect().iterator /** * Internal Redis client for managing Redis connection {@link Jedis} based on {@link RedisPool} */ object InternalRedisClient extends Serializable { @transient private var pool: JedisPool = null def makePool(redisHost: String, redisPort: Int, redisTimeout: Int, maxTotal: Int, maxIdle: Int, minIdle: Int): Unit = { makePool(redisHost, redisPort, redisTimeout, maxTotal, maxIdle, minIdle, true, false, 10000) } def makePool(redisHost: String, redisPort: Int, redisTimeout: Int, maxTotal: Int, maxIdle: Int, minIdle: Int, testOnBorrow: Boolean, testOnReturn: Boolean, maxWaitMillis: Long): Unit = { if (pool == null) { val poolConfig = new GenericObjectPoolConfig() poolConfig.setMaxTotal(maxTotal) poolConfig.setMaxIdle(maxIdle) poolConfig.setMinIdle(minIdle) poolConfig.setTestOnBorrow(testOnBorrow) poolConfig.setTestOnReturn(testOnReturn) poolConfig.setMaxWaitMillis(maxWaitMillis) pool = new JedisPool(poolConfig, redisHost, redisPort, redisTimeout) val hook = new Thread { override def run = pool.destroy() } sys.addShutdownHook(hook.run) } } def getPool: JedisPool = { assert(pool != null) pool } } // Redis configurations val maxTotal = 10 val maxIdle = 10 val minIdle = 1 val redisHost = "dn1" val redisPort = 6379 val redisTimeout = 30000 InternalRedisClient.makePool(redisHost, redisPort, redisTimeout, maxTotal, maxIdle, minIdle) val jedis = InternalRedisClient.getPool.getResource while (results.hasNext) { var item = results.next() var key = item.getString(0) var value = item.getLong(1) jedis.hincrBy(ipLoginHashKey, key, value) } } ssc.start() ssc.awaitTermination() } } /** Case class for converting RDD to DataFrame */ case class Record(plat: String, uid: String, tm: String, country: String, location: String) /** Lazily instantiated singleton instance of SQLContext */ object SQLContextSingleton { @transient private var instance: SQLContext = _ def getInstance(sparkContext: SparkContext): SQLContext = { if (instance == null) { instance = new SQLContext(sparkContext) } instance } }
我们在开发环境进行测试的时候,使用 local[k] 部署模式,在本地启动 K 个 Worker 线程来进行计算,而这 K 个 Worker 在同一个 JVM 中,上面的示例,默认使用 local[k] 模式。这里我们需要普及一下 Spark 的架构,架构图来自 Spark 的官网,[链接地址]
这里,不管是在 local[k] 模式,Standalone 模式,还是 Mesos 或是 YARN 模式,整个 Spark Cluster 的结构都可以用改图来阐述,只是各个组件的运行环境略有不同,从而导致他们可能运行在分布式环境,本地环境,亦或是一个 JVM 实利当中。例如,在 local[k] 模式,上图表示在同一节点上的单个进程上的多个组件,而对于 YARN 模式,驱动程序是在 YARN Cluster 之外的节点上提交 Spark 应用,其他组件都是运行在 YARN Cluster 管理的节点上的。
而对于 Spark Cluster 部署应用后,在进行相关计算的时候会将 RDD 数据集上的函数发送到集群中的 Worker 上的 Executor,然而,这些函数做操作的对象必须是可序列化的。上述代码利用 Scala 的语言特性,解决了这一问题。
在完成上述代码后,我们执行代码,看看预览结果如下,执行结果,如下所示:
整体的实现内容不算太复杂,统计的业务指标,这里我们使用 SQL 来完成这部分工作,对比 Storm 来说,我们专注 SQL 的编写就好,难度不算太大。可操作性较为友好。
这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!
标签:
原文地址:http://www.cnblogs.com/smartloli/p/5560897.html