码迷,mamicode.com
首页 > 其他好文 > 详细

spark mllib 之线性回归

时间:2016-06-06 18:28:34      阅读:193      评论:0      收藏:0      [点我收藏+]

标签:

public static void main(String[] args) {
    SparkConf sparkConf = new SparkConf()
          .setAppName("Regression")
          .setMaster("local[2]");
    JavaSparkContext sc = new JavaSparkContext(sparkConf);
    JavaRDD<String> data = sc.textFile("/home/yurnom/lpsa.txt");
    JavaRDD<LabeledPoint> parsedData = data.map(line -> {
        String[] parts = line.split(",");
        double[] ds = Arrays.stream(parts[1].split(" "))
              .mapToDouble(Double::parseDouble)
              .toArray();
        return new LabeledPoint(Double.parseDouble(parts[0]), Vectors.dense(ds));
    }).cache();
 
    int numIterations = 100; //迭代次数
    LinearRegressionModel model = LinearRegressionWithSGD.train(parsedData.rdd(), numIterations);
    RidgeRegressionModel model1 = RidgeRegressionWithSGD.train(parsedData.rdd(), numIterations);
    LassoModel model2 = LassoWithSGD.train(parsedData.rdd(), numIterations);
 
    print(parsedData, model);
    print(parsedData, model1);
    print(parsedData, model2);
 
    //预测一条新数据方法
    double[] d = new double[]{1.0, 1.0, 2.0, 1.0, 3.0, -1.0, 1.0, -2.0};
    Vector v = Vectors.dense(d);
    System.out.println(model.predict(v));
    System.out.println(model1.predict(v));
    System.out.println(model2.predict(v));
}
 
public static void print(JavaRDD<LabeledPoint> parsedData, GeneralizedLinearModel model) {
    JavaPairRDD<Double, Double> valuesAndPreds = parsedData.mapToPair(point -> {
        double prediction = model.predict(point.features()); //用模型预测训练数据
        return new Tuple2<>(point.label(), prediction);
    });
 
    Double MSE = valuesAndPreds.mapToDouble((Tuple2<Double, Double> t) -> Math.pow(t._1() - t._2(), 2)).mean(); //计算预测值与实际值差值的平方值的均值
    System.out.println(model.getClass().getName() + " training Mean Squared Error = " + MSE);
}

 
 


运行结果

 

LinearRegressionModel training Mean Squared Error = 6.206807793307759
RidgeRegressionModel training Mean Squared Error = 6.416002077543526
LassoModel training Mean Squared Error = 6.972349839013683
Prediction of linear: 0.805390219777772
Prediction of ridge: 1.0907608111865237
Prediction of lasso: 0.18652645118913225

测试数据:

-0.4307829,-1.63735562648104 -2.00621178480549 -1.86242597251066 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306
-0.1625189,-1.98898046126935 -0.722008756122123 -0.787896192088153 -1.02470580167082 -0.522940888712441 -0.863171185425945 -1.04215728919298 -0.864466507337306
-0.1625189,-1.57881887548545 -2.1887840293994 1.36116336875686 -1.02470580167082 -0.522940888712441 -0.863171185425945 0.342627053981254 -0.155348103855541

参考:
http://blog.selfup.cn/747.html

spark mllib 之线性回归

标签:

原文地址:http://www.cnblogs.com/rigid/p/5564455.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!