标签:style blog color 使用 os io for art
最大子数组问题
给定整数A1, A2, …, An(其中可能是负数),求k的最大值和序列的起始位置(为了方便起见,如果所有整数均为负数,则最大子序列和为0),使用四种算法(根据运行时间区分)解决这个问题。
使用了三个for循环,在最坏情况下,运行时间为θ(n3)
#include<stdio.h> #define LEN(array) (sizeof(array)/sizeof(array[0])) void maxsubarray(int *array, int len, int *, int *); main(){ int array[] = {13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7}; int i, start, end; printf("原始数组:\n"); for (i = 0; i < LEN(array); i++) printf("%5d", array[i]); putchar(‘\n‘); maxsubarray(array, LEN(array), &start, &end); printf("最大子序列的起始位置为:%d, 终止位置为:%d\n", start+1, end+1); printf("最大子序列为: "); for (i = start; i <= end; i++) printf("%5d", array[i]); putchar(‘\n‘); putchar(‘\n‘); } void maxsubarray(int *array, int len, int *start, int *end){ int i, j, k, sum, maxsum; maxsum = 0; for (i = 0; i < len; i++){ for (j = i; j < len; j++){ sum = 0; for (k = i; k <= j; k++){ sum += array[k]; if (sum > maxsum){ maxsum = sum; *start = i; *end = j; } } } } printf("\n子序列的求和最大值为: %d\n", maxsum); }
使用了两个for循环,最坏情况下运行时间为θ(n2)
#include<stdio.h> #define LEN(array) (sizeof(array)/sizeof(array[0])) void maxsubarray(int *array, int len, int *, int *); main(){ int array[] = {13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7}; int i, start, end; printf("原始数组:\n"); for (i = 0; i < LEN(array); i++) printf("%5d", array[i]); putchar(‘\n‘); maxsubarray(array, LEN(array), &start, &end); printf("最大子序列的起始位置为:%d, 终止位置为:%d\n", start+1, end+1); printf("最大子序列为: "); for (i = start; i <= end; i++) printf("%5d", array[i]); putchar(‘\n‘); putchar(‘\n‘); } void maxsubarray(int *array, int len, int *start, int *end){ int i, j, sum, maxsum; maxsum = 0; for (i = 0; i < len; i++){ sum = 0; for (j = i; j < len; j++){ sum += array[j]; if (sum > maxsum){ maxsum = sum; *start = i; *end = j; } } } printf("\n子序列的求和最大值为: %d\n", maxsum); }
使用分治法求解:
假设我们要寻找子数组A[low..high]的最大子数组,使用分治技术意味着要将子数组划分为两个规模尽量相等的子数组,也就是说,要找到子数组的中央位置mid,然后考虑求解两个子数组A[low..high]的任何连续子数组A[i..j]所处的位置必然是以下三种情况之一:
递归地求解A[low..mid]和A[mid+1..high]的最大子数组,因为这两个子问题仍然是最大子数组问题,只是规模更小
注意求出跨越中点的最大子数组问题并非原问题的更小实例,因为它加入了限制,求出的子数组必须跨越中点,任何跨越中点的子数组都由两个子数组A[i..mid]和A[mid+1..j]组成,其中low<= i <= mid且mid< j <= high,因此,只需要找出形如A[i..mid]和A[mid+1..j]的最大子数组,然后将其合并即可,过程FIND-MAX-CORSSING-SUBARRAY接收数组A和下标low, mid和high为输入,返回一个下标元组划定跨越中点的最大子数组的边界,并返回最大子数组中值的和
先求出左半部A[low..mid]的最大子数组,再求出右半部A[mid+1..high]的最大子数组,然后返回子数组A[max-left..max-right]
FIND-MAX-CORSSING-SUBARRAY(A, low, mid, high) left-sum = A[mid] sum = 0 for i = mid downto low sum = sum + A[i] if sum > left-sum left-sum = sum max-left = i right-sum = A[mid+1] sum = 0 for j = mid+1 to high sum += A[j] if sum > right-sum right-sum = sum max-right = j return (max-left, max-right, left-sum+right-sum)
求解最大子数组问题的分治算法的伪代码:
FIND-MAXIMUM-SUBARRAY(A, low, high) if high == low return(low, high, A[low]) else mid = (low + high) / 2 (left-low, left-high, left-sum) = FIND-MAXIMUM-SUBARRAY(A, low, mid) (right-low, right-high, right-sum) = FIND-MAXIMUM-SUBARRAY(A, mid+1, high) (cross-low, corss-high, cross-sum) = FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high) if left-sum >= right-sum and left-sum >= corss-sum return (left-low, left-high, left-sum) else if right-sum >= left-sum and right-sum >= cross-sum return (right-low, right-high, right-sum) else return (corss-low, cross-high, cross-sum)
#include<stdio.h> #define LEN(array) (sizeof(array)/sizeof(array[0])) int maxsubarray(int *, int , int , int *, int *); int crosssubarray(int *array, int low, int mid, int high, int *begin, int *end); main(){ int array[] = {13, -3, -25, 20, -3, -16, 23, -18, -20, -7, 12, -5, -22, 15, -4}; int i, start, end, sum; printf("原始数组:\n"); for (i = 0; i < LEN(array); i++) printf("%5d", array[i]); putchar(‘\n‘); sum = maxsubarray(array, 0, LEN(array)-1, &start, &end); printf("最大子序列的和为:%d\n", sum); printf("最大子序列的起始位置为:%d, 终止位置为:%d\n", start+1, end+1); printf("最大子序列为: "); for (i = start; i <= end; i++) printf("%5d", array[i]); putchar(‘\n‘); putchar(‘\n‘); } int maxsubarray(int *array, int low, int high, int *begin, int *end){ int mid, left_sum, right_sum, cross_sum; int left_low, left_high, right_low, right_high, cross_low, cross_high; if (low == high){ return array[low]; *begin = low; *end = high; } mid = (low + high) / 2; left_sum = maxsubarray(array, low, mid, begin, end); left_low = *begin; left_high = *end; right_sum = maxsubarray(array, mid+1, high, begin, end); right_low = *begin; right_high = *end; cross_sum = crosssubarray(array, low, mid, high, begin, end); cross_low = *begin; cross_high = *end; if (left_sum > right_sum && left_sum > cross_sum){ *begin = left_low; *end = left_high; return left_sum; } else if (right_sum > left_sum && right_sum > cross_sum){ *begin = right_low; *end = right_high; return right_sum; } else{ *begin = cross_low; *end = cross_high; return cross_sum; } } int crosssubarray(int *array, int low, int mid, int high, int *begin, int *end){ int left_sum, right_sum, sum, i, j; left_sum = array[mid]; sum = 0; *begin = mid; *end = mid+1; for (i = mid; i >= low; i--){ sum += array[i]; if (sum > left_sum){ left_sum = sum; *begin = i; } } right_sum = array[mid+1]; sum = 0; for (j = mid+1; j <= high; j++){ sum += array[j]; if (sum > right_sum){ right_sum = sum; *end = j; } } return left_sum + right_sum; }
只使用了一次for循环,注意,该算法只适用于数组原来的所有元素的求和值大于0,如果原来的数组的所有元素的求和值小于0,则不适用于本算法
#include<stdio.h> #define LEN(array) (sizeof(array)/sizeof(array[0])) void maxsubarray(int *array, int len, int *, int *); main(){ // int array[] = {13, -3, -25, 20, -3, -16, 23, -18, -20, -7, 12, -5, -22, 15, -4}; // int array[] = {13, -3, -25}; int array[] = {13, -3, -25, 55, -34}; int i, start, end; printf("原始数组:\n"); for (i = 0; i < LEN(array); i++) printf("%5d", array[i]); putchar(‘\n‘); maxsubarray(array, LEN(array), &start, &end); printf("最大子序列的起始位置为:%d, 终止位置为:%d\n", start+1, end+1); printf("最大子序列为: "); for (i = start; i <= end; i++) printf("%5d", array[i]); putchar(‘\n‘); putchar(‘\n‘); } void maxsubarray(int *array, int len, int *start, int *end){ int i, sum, maxsum, temp;
sum = maxsum = 0; temp = 0; for (i = 0; i < len; i++){ sum += array[i]; if (sum > maxsum){ maxsum = sum; *end = i; *start = temp; } else if (sum < 0){ //temp的值就是最大子序列的起始位置 sum = 0; temp = i + 1; } } printf("\n子序列的求和最大值为: %d\n", maxsum); }
标签:style blog color 使用 os io for art
原文地址:http://www.cnblogs.com/eagle159/p/3888611.html