码迷,mamicode.com
首页 > 其他好文 > 详细

哈夫曼编码

时间:2016-06-13 19:14:12      阅读:214      评论:0      收藏:0      [点我收藏+]

标签:

哈夫曼编码是 1952 年由 David A. Huffman 提出的一种无损数据压缩的编码算法。哈夫曼编码先统计出每种字母在字符串里出现的频率,根据频率建立一棵路径带权的二叉树,也就是哈夫曼树,树上每个结点 存储字母出现的频率,根结点到结点的路径即是字母的编码,频率高的字母使用较短的编码,频率低的字母使用较长的编码,使得编码后的字符串占用空间最小。

首先统计每个字母在字符串里出现的频率,我们把每个字母看成一个结点,结点的权值即是字母出现的频率,我们把每个结点看成一棵只有根结点的二叉树,一开始把所有二叉树都放在一个集合里。接下来开始如下编码:

步骤一:从集合里取出两个根结点权值最小的树 a 和 b,构造出一棵新的二叉树 c,二叉树 c 的根结点的权值为 a 和 b 的根结点权值和,二叉树 c 的左右子树分别是 a 和 b。

步骤二:将二叉树 a 和 b 从集合里删除,把二叉树 c 加入集合里。

重复以上两个步骤,直到集合里只剩下一棵二叉树,最后剩下的就是哈夫曼树了。

我们规定每个有孩子结点的结点,到左孩子结点的路径为 0,到右孩子结点的路径为 1。每个字母的编码就是根结点到字母对应结点的路径。

例如有这一个字符串“good good study day day up”,现在我们要对字符串进行哈夫曼编码,该字符串一共有 26 个字符,10 种字符,我们首先统计出每个字符的频率,然后按从大到小顺序排列如下(第二列的字符是空格):

技术分享

我们把每个字符看成一个结点,权值是字符的频率,每个字符开始都是一棵只有根结点的二叉树,如下图。

              技术分享

1.从集合里取出根结点权值最小的两棵树 I 和 J 组成新的二叉树 IJ,根结点权值为 1 + 1 = 2,将二叉树 IJ 加入集合,把 I 和 J 从集合里删除,如下图。

              技术分享

2.从集合里取出根结点权值最小的两棵树 H 和 G 组成新的二叉树 HG,根结点权值为 1 + 2 = 3,将二叉树 HG 加入集合,把 H 和 G 从集合里删除,如下图。

              技术分享

3.从集合里取出根结点权值最小的两棵树 E 和 F 组成新的二叉树 EF,根结点权值为 2 + 2 = 4,将二叉树 EF 加入集合,把 E 和 F 从集合里删除,如下图。

              技术分享

4.从集合里取出根结点权值最小的两棵树 IJ 和 D 组成新的二叉树 IJD,根结点权值为 2 + 3 = 5,将二叉树 IJD 加入集合,把 IJ 和 D 从集合里删除,如下图。

              技术分享

5.从集合里取出根结点权值最小的两棵树 GH 和 C 组成新的二叉树 GHC,根结点权值为 3 + 4 = 7,将二叉树 GHC 加入集合,把 GH 和 C 从集合里删除,如下图。

              技术分享

6.从集合里取出根结点权值最小的两棵树 EF 和 B 组成新的二叉树 EFB,根结点权值为 4 + 5 = 9,将二叉树 EFB 加入集合,把 EF 和 B 从集合里删除,如下图。

              技术分享

7.从集合里取出根结点权值最小的两棵树 IJD 和 A 组成新的二叉树 IJDA,根结点权值为 5 + 5 = 10,将二叉树 IJDA 加入集合,把 IJD 和 A 从集合里删除,如下图。

              技术分享

8.从集合里取出根结点权值最小的两棵树 EFB 和 GHC 组成新的二叉树 EFBGHC,根结点权值为 9 + 7 = 16,将二叉树 EFBGHC 加入集合,把 EFB 和 GHC 从集合里删除,如下图。

              技术分享

9.从集合里取出根结点权值最小的两棵树 EFBGHC 和 IJDA 组成新的二叉树 EFBGHCIJDA,根结点权值为 16 + 10 = 26,将二叉树 EFBGHCIJDA 加入集合,把 EFBGHC 和 IJDA 从集合里删除,如下图。

              技术分享

到这里我们发现集合里就剩一棵二叉树了,那么编码结束,最后这棵二叉树就是我们要得到的哈夫曼树。接下来我们规定非叶子结点的结点,到左子树的路径记为 0,到右子树的路径记为 1,如下图:

              技术分享

根结点到每个叶子结点的路径便是其对应字母的编码了,于是我们可以得到:

技术分享

下面我们来算一下哈夫曼树的带权路径长度 WPL,也就是每个叶子到根的距离乘以叶子权值结果之和。

WPL = 5 * 2 + 5 * 3 + 4 * 3 + 3 * 3 + 2 * 4 + 2 * 4 + 2 * 4 + 1 * 4 + 1 * 4 + 1 * 4 = 82。

我们来算下如果直接存储字符串需要多少个比特,我们知道一个字符占一个字节,一个字节占 8 个比特,所以一共需要 8 * 26 = 208 个比特。我们再来看看哈夫曼编码需要多少个比特,我们可以发现 WPL 也就是编码后原来字符串所占的比特总长度 82。显然,哈夫曼编码把原数据压缩了好多,而且没有损失。

哈夫曼编码

标签:

原文地址:http://www.cnblogs.com/clairvoyant/p/5581590.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!