N个顶点,M条边,每条边可能为黑色或是白色( 0 or 1 ),问有没有可能用为斐波那契数的数目的白色边构成一棵生成树。所以需要删掉图中的环,根据每次删掉的边有一个白色边的上限和下限,判断一下中间有没有斐波那契数就可以了。实现方法是根据颜色排序,先放黑色边得到的是最小数目的白色边构成的生成树,先放白色边得到是最大数目的白色边构成的生成树。
#include<cstring>
#include<string>
#include<fstream>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<stack>
#include<ctime>
#include<cstdlib>
#include<functional>
#include<cmath>
using namespace std;
#define PI acos(-1.0)
#define MAXN 110000
#define eps 1e-7
#define INF 0x7FFFFFFF
#define seed 131
#define ll long long
#define ull unsigned ll
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
struct node{
int u,v,col;
}edge[MAXN];
int father[MAXN],fi[90];
int n,m,flag;
bool cmp(node x,node y){
return x.col>y.col;
}
int find(int x){
int t = x;
while(father[t]!=t){
t = father[t];
}
int k = x;
while(k!=t){
int temp = father[k];
father[k] = t;
k = temp;
}
return t;
}
void solve(){
int i,j=0;
int flag2 = 0;
int minm,maxm;
minm = maxm = 0;
sort(edge,edge+m,cmp);
for(i=0;i<m;i++){
int a = find(edge[i].u);
int b = find(edge[i].v);
if(a!=b){
if(edge[i].col==1) maxm++;
father[a] = b;
j++;
if(j>=n-1){
flag2 = 1;
break;
}
}
}
if(flag2==0){
return ;
}
for(i=1;i<=n;i++){
father[i] = i;
}
j = 0;
for(i=m-1;i>=0;i--){
int a = find(edge[i].u);
int b = find(edge[i].v);
if(a!=b){
if(edge[i].col==1) minm++;
father[a] = b;
j++;
if(j>=n-1) break;
}
}
//cout<<minm<<" "<<maxm<<endl;
for(i=1;i<45;i++){
if(fi[i]>=minm&&fi[i]<=maxm)
{
flag = 1;
break;
}
}
}
int main(){
int i,j,k=1,t;
int a,b,c;
fi[1] = 1;
fi[2] = 2;
for(i=3;i<45;i++){
fi[i] = fi[i-1] + fi[i-2];
//cout<<fi[i]<<" "<<i<<" "<<endl;
}
scanf("%d",&t);
while(t--){
flag = 0;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++) father[i] = i;
for(i=0;i<m;i++){
scanf("%d%d%d",&a,&b,&c);
edge[i].u = a;
edge[i].v = b;
edge[i].col = c;
}
solve();
if(flag) printf("Case #%d: Yes\n",k++);
else printf("Case #%d: No\n",k++);
}
return 0;
}HDU--4786 Fibonacci Tree 生成树+贪心?,布布扣,bubuko.com
HDU--4786 Fibonacci Tree 生成树+贪心?
原文地址:http://blog.csdn.net/q295657451/article/details/38365587