码迷,mamicode.com
首页 > 其他好文 > 详细

数据聚类-----medoids

时间:2014-08-04 16:54:17      阅读:232      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   使用   数据   for   ar   代码   

      前一篇我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相似的。事实也确实如此,k-medoids 可以算是 k-means 的一个变种。

      k-medoids 和 k-means 不一样的地方在于中心点的选取,在 k-means 中,我们将中心点取为当前 cluster 中所有数据点的平均值:

                                                        bubuko.com,布布扣

并且我们已经证明在固定了各个数据点的 assignment 的情况下,这样选取的中心点能够把目标函数 J 最小化。然而在 k-medoids 中,我们将中心点的选取限制在当前 cluster 所包含的数据点的集合中。换句话说,在 k-medoids 算法中,我们将从当前 cluster 中选取这样一个点——它到其他所有(当前 cluster 中的)点的距离之和最小——作为中心点。k-means 和 k-medoids 之间的差异就类似于一个数据样本的均值 (mean) 和中位数 (median) 之间的差异:前者的取值范围可以是连续空间中的任意值,而后者只能在给样本给定的那些点里面选。那么,这样做的好处是什么呢?
一个最直接的理由就是 k-means 对数据的要求太高了,它使用欧氏距离描述数据点之间的差异 (dissimilarity) ,从而可以直接通过求均值来计算中心点。这要求数据点处在一个欧氏空间之中。

然而并不是所有的数据都能满足这样的要求,对于数值类型的特征,比如身高,可以很自然地用这样的方式来处理,但是类别 (categorical) 类型的特征就不行了。举一个简单的例子,如果我现在要对犬进行聚类,并且希望直接在所有犬组成的空间中进行,k-means 就无能为力了,因为欧氏距离 \|x_i-x_j\|^2 在这里不能用了:一只 Samoyed 减去一只 Rough Collie 然后在平方一下?天知道那是什么!再加上一只 German Shepherd Dog 然后求一下平均值?根本没法算,k-means 在这里寸步难行!

在 k-medoids 中,我们把原来的目标函数 J 中的欧氏距离改为一个任意的 dissimilarity measure 函数bubuko.com,布布扣

                                                                     bubuko.com,布布扣

最常见的方式是构造一个 dissimilarity matrix \mathbf{D} 来代表 \mathcal{V},其中的元素 \mathbf{D}_{ij} 表示第 i 只狗和第 j 只狗之间的差异程度,例如,两只 Samoyed 之间的差异可以设为 0 ,一只 German Shepherd Dog 和一只 Rough Collie 之间的差异是 0.7,和一只 Miniature Schnauzer 之间的差异是 1 ,等等。

除此之外,由于中心点是在已有的数据点里面选取的,因此相对于 k-means 来说,不容易受到那些由于误差之类的原因产生的 Outlier 的影响,更加 robust 一些。

扯了这么多,还是直接来看看 k-medoids 的效果好了,由于 k-medoids 对数据的要求比 k-means 要低,所以 k-means 能处理的情况自然 k-medoids 也能处理,为了能先睹为快,我们偷一下懒,直接在上一篇文章中的 k-means 代码的基础上稍作一点修改,还用同样的例子。将代码的 45 到 47 行改成下面这样:

 for j in range(k):
            idx_j = (labels == j).nonzero()
            distj = distmat(X[idx_j], X[idx_j])
            distsum = ml.sum(distj, axis=1)
            icenter = distsum.argmin()
            centers[j] = X[idx_j[0][icenter]]

  可以看到 k-medoids 在这个例子上也能得到很好的结果:

 

bubuko.com,布布扣

而且,同 k-means 一样,运气不好的时候也会陷入局部最优解中:

bubuko.com,布布扣

如果仔细看上面那段代码的话,就会发现,从 k-means 变到 k-medoids ,时间复杂度陡然增加了许多:在 k-means 中只要求一个平均值 bubuko.com,布布扣 即可,而在 k-medoids 中则需要枚举每个点,并求出它到所有其他点的距离之和,复杂度为 bubuko.com,布布扣 。

数据聚类-----medoids,布布扣,bubuko.com

数据聚类-----medoids

标签:style   blog   http   使用   数据   for   ar   代码   

原文地址:http://www.cnblogs.com/zeakey/p/3890165.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!