码迷,mamicode.com
首页 > 其他好文 > 详细

【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

时间:2016-06-17 21:13:14      阅读:406      评论:0      收藏:0      [点我收藏+]

标签:

4316: 小C的独立集

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 57  Solved: 41
[Submit][Status][Discuss]

Description

图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨。
这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使取出的点尽量多。
小D虽然图论很弱,但是也知道无向图最大独立集是npc,但是小C很仁慈的给了一个很有特点的图: 图中任何一条边属于且仅属于一个简单环,图中没有重边和自环。小C说这样就会比较水了。
小D觉得这个题目很有趣,就交给你了,相信你一定可以解出来的。

Input

第一行,两个数n, m,表示图的点数和边数。
第二~m+1行,每行两个数x,y,表示x与y之间有一条无向边。

Output

输出这个图的最大独立集。

Sample Input

5 6
1 2
2 3
3 1
3 4
4 5
3 5

Sample Output

2

HINT

100% n <=50000, m<=60000

Source

Solution

作为切SDOI2010Area的铺垫

仙人掌DP求 最大独立集

最大独立集:感性的描述就是,一个图中,相邻点不能同时选,选出来最(多/点权总和最大)的点集

对于一般图,往往采用  转化成补图 求 最大团

但基于 树 和 仙人掌 可以利用DP求解 (树形DP求最大独立集,详见   CodeVS1380没有上司的舞会)

至于仙人掌,就是树+基环,且强连通(描述简陋,垃圾),详见下:

技术分享

仙人掌DP的话,与树形DP同理,对于树边,可以直接进行树形DP,对于环,考虑单独处理,即单独DP,DP方式和树形DP一样

dp[x][0/1]表示  (选/不选)X节点的最优答案

转移显而易见,至于对环的考虑方法,可以采用Tarjan求强连通分量的思路,利用low和dfn进行判断    更多详见  某论文

Code

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
    int x=0,f=1; char ch=getchar();
    while (ch<0 || ch>9) {if (ch==-) f=-1; ch=getchar();}
    while (ch>=0 && ch<=9) {x=x*10+ch-0; ch=getchar();}
    return x*f;
}
#define maxn 100010
struct EdgeNode{int next,to;}edge[maxn<<2];
int head[maxn],cnt;
void add(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
void insert(int u,int v) {add(u,v); add(v,u);}
int n,m,ans,tot;
int dp1[maxn][2],dp2[maxn][2],ring[maxn],fa[maxn],dfn[maxn],low[maxn],t,deep[maxn];
void CactusDP(int st,int tt)
{
    ring[0]=st; ring[1]=tt; int zz=1;
    while (ring[zz]!=st) {ring[zz+1]=fa[ring[zz]]; zz++;}
    dp2[0][0]=dp2[0][1]=0;
    for (int i=1; i<=zz; i++)
        dp2[i][1]=dp2[i-1][0]+dp1[ring[i]][1],
        dp2[i][0]=max(dp2[i-1][0],dp2[i-1][1])+dp1[ring[i]][0];
    int tmp=dp2[zz][0];
    dp2[0][0]=-0x7fffffff;
    for (int i=1; i<=zz; i++)
        dp2[i][1]=dp2[i-1][0]+dp1[ring[i]][1],
        dp2[i][0]=max(dp2[i-1][0],dp2[i-1][1])+dp1[ring[i]][0];
    dp1[st][0]=tmp; dp1[st][1]=dp2[zz][1];
}
void TreeDP(int now)
{
    dfn[now]=low[now]=++t;
    dp1[now][1]=1; dp1[now][0]=0;
    for (int i=head[now]; i; i=edge[i].next)
        if (edge[i].to!=fa[now])
            {
                if (deep[edge[i].to]) {low[now]=min(dfn[edge[i].to],low[now]); continue;}
                fa[edge[i].to]=now;
                deep[edge[i].to]=deep[now]+1;
                TreeDP(edge[i].to);
                if (low[edge[i].to]>dfn[now]) 
                    dp1[now][1]+=dp1[edge[i].to][0],dp1[now][0]+=max(dp1[edge[i].to][1],dp1[edge[i].to][0]);
                low[now]=min(low[now],low[edge[i].to]);
            }
    for (int i=head[now]; i; i=edge[i].next)
        if (edge[i].to!=fa[now] && low[edge[i].to]==dfn[now] && deep[edge[i].to]!=deep[now]+1)
            CactusDP(now,edge[i].to);
}
int main()
{
    n=read(),m=read();
    for (int u,v,i=1; i<=m; i++) u=read(),v=read(),insert(u,v);
    for (int i=1; i<=n; i++)
        if (!dfn[i]) {deep[i]=1; fa[i]=i; TreeDP(i); ans+=max(dp1[i][0],dp1[i][1]);}//为了防止出现仙人掌森林的情况QAQ
    printf("%d\n",ans);
    return 0;
}

 

【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集

标签:

原文地址:http://www.cnblogs.com/DaD3zZ-Beyonder/p/5595119.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!