标签:
pandas.DataFrame.groupby
DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
    Parameters:    
    by : mapping function / list of functions, dict, Series, or tuple /
        list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups
    axis : int, default 0
    level : int, level name, or sequence of such, default None
        If the axis is a MultiIndex (hierarchical), group by a particular level or levels
    as_index : boolean, default True
        For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output
    sort : boolean, default True
        Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.
    group_keys : boolean, default True
        When calling apply, add group keys to index to identify pieces
    squeeze : boolean, default False
        reduce the dimensionality of the return type if possible, otherwise return a consistent type
    Returns:    
        GroupBy object
DataFrame results
>>> data.groupby(func, axis=0).mean() >>> data.groupby([‘col1‘, ‘col2‘])[‘col3‘].mean()
DataFrame with hierarchical index
>>> data.groupby([‘col1‘, ‘col2‘]).mean()
标签:
原文地址:http://www.cnblogs.com/hhh5460/p/5596374.html