码迷,mamicode.com
首页 > 其他好文 > 详细

166. Fraction to Recurring Decimal

时间:2016-06-19 06:42:11      阅读:120      评论:0      收藏:0      [点我收藏+]

标签:

Given two integers representing the numerator and denominator of a fraction, return the fraction in string format.

If the fractional part is repeating, enclose the repeating part in parentheses.

For example,

  • Given numerator = 1, denominator = 2, return "0.5".
  • Given numerator = 2, denominator = 1, return "2".
  • Given numerator = 2, denominator = 3, return "0.(6)".

 

Hint:

  1. No scary math, just apply elementary math knowledge. Still remember how to perform a long division?
  2. Try a long division on 4/9, the repeating part is obvious. Now try 4/333. Do you see a pattern?
  3. Be wary of edge cases! List out as many test cases as you can think of and test your code thoroughly.

 

public class Solution {
    public String fractionToDecimal(int numerator, int denominator) {
        if (numerator == 0) {
            return "0";
        }
        StringBuilder res = new StringBuilder();
        // "+" or "-"
        res.append(((numerator > 0) ^ (denominator > 0)) ? "-" : "");
        long num = Math.abs((long)numerator);
        long den = Math.abs((long)denominator);

        // integral part
        res.append(num / den);
        num %= den;
        if (num == 0) {
            return res.toString();
        }

        // fractional part
        res.append(".");
        HashMap<Long, Integer> map = new HashMap<Long, Integer>();
        map.put(num, res.length());
        while (num != 0) {
            num *= 10;
            res.append(num / den);
            num %= den;
            if (map.containsKey(num)) {
                int index = map.get(num);
                res.insert(index, "(");
                res.append(")");
                break;
            }
            else {
                map.put(num, res.length());
            }
        }
        return res.toString();
    }
}

 

 

 

 

 

166. Fraction to Recurring Decimal

标签:

原文地址:http://www.cnblogs.com/neweracoding/p/5597327.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!