标签:
开发板:mini2440
内核 :linux2.6.32.2
参考 :韦东山毕业班I2C视频教程
1、i2c协议简要分析
i2c中线是一种由 PHILIPS 公司开发的串行总线,用于连接微控制器及其外围设备,它具有以下特点。8、连接到同一总线上的IC数量只受到总线的最大电容400Pf的限制。
如上图所示,启动一个传输时,主机先发送一个S信号,然后发送8位数据。这8位数据的前7位为从机地址,第八位表示传输的方向(0表示写,1表示读),如果有数据则继续发送,最后发出P信号停止。
信号类型:
注意:正常数据传输时,SDA 在 SCL 为低电平时改变,在 SCL 为高电平时保持稳定。2、 s3c2440 读写流程
3、 AT24C08 读写分析
1、写过程
2、读过程
附上一份简单的裸机程序,仅供参考:基于MINI2440
#include <stdio.h> #include "s3c2440.h" void Delay(int time); #define WRDATA (1) #define RDDATA (2) typedef struct tI2C { unsigned char *pData; /* 数据缓冲区 */ volatile int DataCount; /* 等待传输的数据长度 */ volatile int Status; /* 状态 */ volatile int Mode; /* 模式:读/写 */ volatile int Pt; /* pData中待传输数据的位置 */ }tS3C24xx_I2C, *ptS3C24xx_I2C; static tS3C24xx_I2C g_tS3C24xx_I2C; /* * I2C初始化 */ void i2c_init(void) { GPEUP |= 0xc000; // 禁止内部上拉 /* * AT24C08 两根线 I2CSCL I2CSDA 与 2440芯片相连 * 配置2440 GPECON GPE15 GPE14引脚为I2C功能 */ GPECON |= 0xa0000000; // 选择引脚功能:GPE15:IICSDA, GPE14:IICSCL /* 开INT_IIC中断 */ //INTMSK &= ~(BIT_IIC); /* bit[7] = 1, 使能ACK * bit[6] = 0, IICCLK = PCLK/16 * bit[5] = 1, 使能中断 * bit[3:0] = 0xf, Tx clock = IICCLK/16 * PCLK = 50MHz, IICCLK = 3.125MHz, Tx Clock = 0.195MHz */ IICCON = (1<<7) | (0<<6) | (1<<5) | (0xf); // 0xaf //IICADD = 0x10; // S3C24xx slave address = [7:1] IICSTAT = 0x10; // I2C串行输出使能(Rx/Tx) } void I_Write(unsigned int slvaddr, unsigned char addr, unsigned char data) { unsigned int ack; // 写从地址 IICSTAT |= 0x1<<6;//主机写模式 IICSTAT |= 0x1<<7; IICDS = slvaddr;//0xa0; //write slave address to IICDS IICCON&=~0x10; //clear pending bit IICSTAT = 0xf0; //(M/T start) while((IICCON & 1<<4) == 0);//udelay(10);//ack period and then interrupt is pending // 写寄存器地址 IICDS = addr; IICCON&=~0x10; //clear pending bit while((IICCON & 1<<4) == 0);//udelay(10);//ack period and then interrupt is pending // 写数据 IICDS = data; IICCON&=~0x10; //clear pending bit while((IICCON & 1<<4) == 0);//udelay(10);//ack period and then interrupt is pending // 发出停止信号 IICSTAT = 0xD0; //write (M/T stop to IICSTAT) IICCON&=~0x10; //clear pending bit while((IICSTAT & 1<<5) == 1); } unsigned char I_Read(unsigned int slvaddr, unsigned char addr) { unsigned char data = 1; int ack; // 写从地址 IICSTAT |= 0x1<<6;//主机写模式 IICSTAT |= 0x1<<7; slvaddr = 0xA0; IICDS = slvaddr;//0xa0; //write slave address to IICDS IICCON&=~0x10; //clear pending bit IICSTAT = 0xf0; //(M/T start) while((IICCON & 1<<4) == 0);//udelay(10);//ack period and then interrupt is pending // 写寄存器地址 IICDS = addr; IICCON&=~0x10; //clear pending bit while((IICCON & 1<<4) == 0);//udelay(10);//ack period and then interrupt is pending // 写从地址(读模式) slvaddr = 0xA1; IICSTAT &= ~(0x1<<6);//主机接受模式 IICSTAT |= 0x1<<7; IICDS = slvaddr; IICCON&=~0x10; //clear pending bit IICSTAT = 0xb0; //(M/R Start) while((IICCON & 1<<4) == 0);//udelay(10);//uart_SendByte('o');//ack period and then interrupt is pending:: // 读数据 data = IICDS; //IICCON&=~0x10; //clear pending bit IICCON = 0x2f; //清挂起状态,并设置无应答 while((IICCON & 1<<4) == 0);//udelay(10);//ack period and then interrupt is pending data = IICDS; //IICCON&=~0x10; //clear pending bit IICCON = 0x2f; //清挂起状态,并设置无应答 while((IICCON & 1<<4) == 0);//udelay(10);//ack period and then interrupt is pending IICSTAT = 0x90; IICCON = 0xaf; //IICCON &= ~0x10; //clear pending bit while((IICSTAT & 1<<5) == 1); return data; }
struct i2c_msg { __u16 addr; //从机地址 __u16 flags; __u16 len; // buf 里 有多少个字节 __u8 *buf; // 本 msg 含有的数据,可能是1个字节,可有可能是多个字节 };
此函数,省略了很多内容,举例分析而已~,细节请看源码
static s32 i2c_smbus_xfer_emulated(struct i2c_adapter * adapter, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data * data) { unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3]; unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2]; int num = read_write == I2C_SMBUS_READ?2:1; // 写操作两个Msg 读操作一个msg 这和我们前面分析AT24c08是一致的 struct i2c_msg msg[2] = { { addr, flags, 1, msgbuf0 }, { addr, flags | I2C_M_RD, 0, msgbuf1 } }; msgbuf0[0] = command; // 从机地址右移1位得到的,比如AT24C08 为 0x50 switch(size) { case I2C_SMBUS_BYTE_DATA: // 单字节读写 if (read_write == I2C_SMBUS_READ) msg[1].len = 1; /* * 读: * msgbuf0[0] = command * msg[1].len = 1 ,数据会读到 msgbuf0[1] 里 */ else { msg[0].len = 2; msgbuf0[1] = data->byte; /* * 写: * msgbuf0[0] = command * msgbuf0[1] = data->byte */ } break; } status = i2c_transfer(adapter, msg, num); }上面代码跟我们分析AT24C08的时候如出一辙,对于一个写操作,我们只需要一个2440的写流程对应于这里的一个Msg,然而对于读操作,我们需要2440的两个流程,对应于这里的两个Msg。那么,我们底层控制器驱动需要做的工作就是,取出所有的Msg,将每一个Msg里buf里的数据发送出去,如果有下一个Msg, 那么再将下一个Msg里的buf发送完毕,最后发出P停止信号。还有一点,每发送一个Msg都要先发出S开始信号。
在看adapter程序之前,我们先来简单思考一下,发出S开始信号之后,可能有以下3中情况:
1、当前msg.len
== 0 ,如果有ACK直接发出stop信号。这种情况出现在,控制器枚举设备的时候,因为它只发送S信号以及设备地址,不发送数据。
2、根据msg->flags
为 I2C_M_RD 等信息判断读写,msg->flags 最低位为1表示读,最低位为0表示写。
#define I2C_M_TEN0x0010
/* this is a ten bit chip address */
#define I2C_M_RD0x0001
/* read data, from slave to master */
#define I2C_M_NOSTART0x4000
/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_REV_DIR_ADDR0x2000 /*
if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_IGNORE_NAK0x1000
/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_NO_RD_ACK0x0800
/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_RECV_LEN0x0400
/* length will be first received byte */
2.1
如果是读
恢复 IIC 传输,开始读就行了,在下一个中断里将寄存器数据取出,如果是最后一个要读取的数据,不能发送ACK(禁用ACK)。
2.2 如果是写
将数据写入 IICDS 寄存器,恢复 IIC 传输。
附上韦东山老师的程序:
看程序之前,看一个大致的流程图,对于理解程序有帮助
#include <linux/kernel.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/time.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/clk.h> #include <linux/cpufreq.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/of_i2c.h> #include <linux/of_gpio.h> #include <plat/gpio-cfg.h> #include <mach/regs-gpio.h> #include <asm/irq.h> #include <plat/regs-iic.h> #include <plat/iic.h> //#define PRINTK printk #define PRINTK(...) enum s3c24xx_i2c_state { STATE_IDLE, STATE_START, STATE_READ, STATE_WRITE, STATE_STOP }; struct s3c2440_i2c_regs { unsigned int iiccon; unsigned int iicstat; unsigned int iicadd; unsigned int iicds; unsigned int iiclc; }; struct s3c2440_i2c_xfer_data { struct i2c_msg *msgs; int msn_num; int cur_msg; int cur_ptr; int state; int err; wait_queue_head_t wait; }; static struct s3c2440_i2c_xfer_data s3c2440_i2c_xfer_data; static struct s3c2440_i2c_regs *s3c2440_i2c_regs; static void s3c2440_i2c_start(void) { s3c2440_i2c_xfer_data.state = STATE_START; if (s3c2440_i2c_xfer_data.msgs->flags & I2C_M_RD) /* 读 */ { s3c2440_i2c_regs->iicds = s3c2440_i2c_xfer_data.msgs->addr << 1; s3c2440_i2c_regs->iicstat = 0xb0; // 主机接收,启动 } else /* 写 */ { s3c2440_i2c_regs->iicds = s3c2440_i2c_xfer_data.msgs->addr << 1; s3c2440_i2c_regs->iicstat = 0xf0; // 主机发送,启动 } } static void s3c2440_i2c_stop(int err) { s3c2440_i2c_xfer_data.state = STATE_STOP; s3c2440_i2c_xfer_data.err = err; PRINTK("STATE_STOP, err = %d\n", err); if (s3c2440_i2c_xfer_data.msgs->flags & I2C_M_RD) /* 读 */ { // 下面两行恢复I2C操作,发出P信号 s3c2440_i2c_regs->iicstat = 0x90; s3c2440_i2c_regs->iiccon = 0xaf; ndelay(50); // 等待一段时间以便P信号已经发出 } else /* 写 */ { // 下面两行用来恢复I2C操作,发出P信号 s3c2440_i2c_regs->iicstat = 0xd0; s3c2440_i2c_regs->iiccon = 0xaf; ndelay(50); // 等待一段时间以便P信号已经发出 } /* 唤醒 */ wake_up(&s3c2440_i2c_xfer_data.wait); } static int s3c2440_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { unsigned long timeout; /* 把num个msg的I2C数据发送出去/读进来 */ s3c2440_i2c_xfer_data.msgs = msgs; s3c2440_i2c_xfer_data.msn_num = num; s3c2440_i2c_xfer_data.cur_msg = 0; s3c2440_i2c_xfer_data.cur_ptr = 0; s3c2440_i2c_xfer_data.err = -ENODEV; s3c2440_i2c_start(); /* 休眠 */ timeout = wait_event_timeout(s3c2440_i2c_xfer_data.wait, (s3c2440_i2c_xfer_data.state == STATE_STOP), HZ * 5); if (0 == timeout) { printk("s3c2440_i2c_xfer time out\n"); return -ETIMEDOUT; } else { return s3c2440_i2c_xfer_data.err; } } static u32 s3c2440_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; } static const struct i2c_algorithm s3c2440_i2c_algo = { // .smbus_xfer = , .master_xfer = s3c2440_i2c_xfer, .functionality = s3c2440_i2c_func, }; /* 1. 分配/设置i2c_adapter */ static struct i2c_adapter s3c2440_i2c_adapter = { .name = "s3c2440_100ask", .algo = &s3c2440_i2c_algo, .owner = THIS_MODULE, }; static int isLastMsg(void) { return (s3c2440_i2c_xfer_data.cur_msg == s3c2440_i2c_xfer_data.msn_num - 1); } static int isEndData(void) { return (s3c2440_i2c_xfer_data.cur_ptr >= s3c2440_i2c_xfer_data.msgs->len); } static int isLastData(void) { return (s3c2440_i2c_xfer_data.cur_ptr == s3c2440_i2c_xfer_data.msgs->len - 1); } static irqreturn_t s3c2440_i2c_xfer_irq(int irq, void *dev_id) { unsigned int iicSt; iicSt = s3c2440_i2c_regs->iicstat; if(iicSt & 0x8){ printk("Bus arbitration failed\n\r"); } switch (s3c2440_i2c_xfer_data.state) { case STATE_START : /* 发出S和设备地址后,产生中断 */ { PRINTK("Start\n"); /* 如果没有ACK, 返回错误 */ if (iicSt & S3C2410_IICSTAT_LASTBIT) { s3c2440_i2c_stop(-ENODEV); break; } if (isLastMsg() && isEndData()) { s3c2440_i2c_stop(0); break; } /* 进入下一个状态 */ if (s3c2440_i2c_xfer_data.msgs->flags & I2C_M_RD) /* 读 */ { s3c2440_i2c_xfer_data.state = STATE_READ; goto next_read; } else { s3c2440_i2c_xfer_data.state = STATE_WRITE; } } case STATE_WRITE: { PRINTK("STATE_WRITE\n"); /* 如果没有ACK, 返回错误 */ if (iicSt & S3C2410_IICSTAT_LASTBIT) { s3c2440_i2c_stop(-ENODEV); break; } if (!isEndData()) /* 如果当前msg还有数据要发送 */ { s3c2440_i2c_regs->iicds = s3c2440_i2c_xfer_data.msgs->buf[s3c2440_i2c_xfer_data.cur_ptr]; s3c2440_i2c_xfer_data.cur_ptr++; // 将数据写入IICDS后,需要一段时间才能出现在SDA线上 ndelay(50); s3c2440_i2c_regs->iiccon = 0xaf; // 恢复I2C传输 break; } else if (!isLastMsg()) { /* 开始处理下一个消息 */ s3c2440_i2c_xfer_data.msgs++; s3c2440_i2c_xfer_data.cur_msg++; s3c2440_i2c_xfer_data.cur_ptr = 0; s3c2440_i2c_xfer_data.state = STATE_START; /* 发出START信号和发出设备地址 */ s3c2440_i2c_start(); break; } else { /* 是最后一个消息的最后一个数据 */ s3c2440_i2c_stop(0); break; } break; } case STATE_READ: { PRINTK("STATE_READ\n"); /* 读出数据 */ s3c2440_i2c_xfer_data.msgs->buf[s3c2440_i2c_xfer_data.cur_ptr] = s3c2440_i2c_regs->iicds; s3c2440_i2c_xfer_data.cur_ptr++; next_read: if (!isEndData()) /* 如果数据没读写, 继续发起读操作 */ { if (isLastData()) /* 如果即将读的数据是最后一个, 不发ack */ { s3c2440_i2c_regs->iiccon = 0x2f; // 恢复I2C传输,接收到下一数据时无ACK } else { s3c2440_i2c_regs->iiccon = 0xaf; // 恢复I2C传输,接收到下一数据时发出ACK } break; } else if (!isLastMsg()) { /* 开始处理下一个消息 */ s3c2440_i2c_xfer_data.msgs++; s3c2440_i2c_xfer_data.cur_msg++; s3c2440_i2c_xfer_data.cur_ptr = 0; s3c2440_i2c_xfer_data.state = STATE_START; /* 发出START信号和发出设备地址 */ s3c2440_i2c_start(); break; } else { /* 是最后一个消息的最后一个数据 */ s3c2440_i2c_stop(0); break; } break; } default: break; } /* 清中断 */ s3c2440_i2c_regs->iiccon &= ~(S3C2410_IICCON_IRQPEND); return IRQ_HANDLED; } /* * I2C初始化 */ static void s3c2440_i2c_init(void) { struct clk *clk; clk = clk_get(NULL, "i2c"); clk_enable(clk); // 选择引脚功能:GPE15:IICSDA, GPE14:IICSCL s3c_gpio_cfgpin(S3C2410_GPE(14), S3C2410_GPE14_IICSCL); s3c_gpio_cfgpin(S3C2410_GPE(15), S3C2410_GPE15_IICSDA); /* bit[7] = 1, 使能ACK * bit[6] = 0, IICCLK = PCLK/16 * bit[5] = 1, 使能中断 * bit[3:0] = 0xf, Tx clock = IICCLK/16 * PCLK = 50MHz, IICCLK = 3.125MHz, Tx Clock = 0.195MHz */ s3c2440_i2c_regs->iiccon = (1<<7) | (0<<6) | (1<<5) | (0xf); // 0xaf s3c2440_i2c_regs->iicadd = 0x10; // S3C24xx slave address = [7:1] s3c2440_i2c_regs->iicstat = 0x10; // I2C串行输出使能(Rx/Tx) } static int i2c_bus_s3c2440_init(void) { /* 2. 硬件相关的设置 */ s3c2440_i2c_regs = ioremap(0x54000000, sizeof(struct s3c2440_i2c_regs)); s3c2440_i2c_init(); request_irq(IRQ_IIC, s3c2440_i2c_xfer_irq, 0, "s3c2440-i2c", NULL); init_waitqueue_head(&s3c2440_i2c_xfer_data.wait); /* 3. 注册i2c_adapter */ i2c_add_adapter(&s3c2440_i2c_adapter); return 0; } static void i2c_bus_s3c2440_exit(void) { i2c_del_adapter(&s3c2440_i2c_adapter); free_irq(IRQ_IIC, NULL); iounmap(s3c2440_i2c_regs); } module_init(i2c_bus_s3c2440_init); module_exit(i2c_bus_s3c2440_exit); MODULE_LICENSE("GPL");
标签:
原文地址:http://blog.csdn.net/lizuobin2/article/details/51713637