标签:
为什么学习
自从学了Android自定义控件的一些知识,总是处于似懂非懂状态,说都说了上来,自己在项目里封装了一些自定义控件,但是还是缺乏一个很直观的了解。所以去了解学习下Android是如何封装控件的,就从简单的入手,分析下LinearLayout是如何实现的
什么是LinearLayout
作为最基础的布局,所以从事过Android开发的同学都应该非常了解
中文解释应该叫做线性布局,相比如RelativeLayout,LinearLayout更简单,在没有weight的情况也每次只要测量一次就够,而RelativeLayout每次都需要测量两次
一些LinearLayout需要注意的属性
orientation 纵向排布或者水平排布
weight 权重,用于分配LinearLayout剩下的空间(会详细介绍)
measureWithLargestChild 这个属性不常见,如果赋值为true的话,所有
weight子View都会采用最大View的最小尺寸(为什么Android要设计这个属性,我也不是很理解)
源码分析
一般所有控件类的源码,都会从 measure, layout和draw3个方法入手,查看他们的回调函数onMeasure, onLayout和onDraw
只要明白这3个流程,一般控件的整个实现也就明白了
LinearLayout作为一个ViewGroup的子类,主要作为一个布局容器出现,所以我们需要重点查看写onMeasure方法
@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
if (mOrientation == VERTICAL) {
measureVertical(widthMeasureSpec, heightMeasureSpec);
} else {
measureHorizontal(widthMeasureSpec, heightMeasureSpec);
}
}
从上面代码看到,LinearLayout的onMeasure方法实现非常简洁,根据布局方向分为measureVertical和measureHorizontal。下后面的onLayout和onDraw也是如此。鉴于内部实现基本一模一样,我在这只分析纵向的实现
/**
* Measures the children when the orientation of this LinearLayout is set
* to {@link #VERTICAL}.
*
* @param widthMeasureSpec Horizontal space requirements as imposed by the parent.
* @param heightMeasureSpec Vertical space requirements as imposed by the parent.
*
* @see #getOrientation()
* @see #setOrientation(int)
* @see #onMeasure(int, int)
*/
void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
mTotalLength = 0;
int maxWidth = 0;
int childState = 0;
int alternativeMaxWidth = 0;
int weightedMaxWidth = 0;
boolean allFillParent = true;
float totalWeight = 0;
final int count = getVirtualChildCount();
final int widthMode = MeasureSpec.getMode(widthMeasureSpec);
final int heightMode = MeasureSpec.getMode(heightMeasureSpec);
boolean matchWidth = false;
boolean skippedMeasure = false;
final int baselineChildIndex = mBaselineAlignedChildIndex;
final boolean useLargestChild = mUseLargestChild;
int largestChildHeight = Integer.MIN_VALUE;
// See how tall everyone is. Also remember max width.
for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i);
if (child == null) {
mTotalLength += measureNullChild(i);
continue;
}
if (child.getVisibility() == View.GONE) {
i += getChildrenSkipCount(child, i);
continue;
}
if (hasDividerBeforeChildAt(i)) {
mTotalLength += mDividerHeight;
}
LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams();
totalWeight += lp.weight;
if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) {
// Optimization: don‘t bother measuring children who are going to use
// leftover space. These views will get measured again down below if
// there is any leftover space.
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
skippedMeasure = true;
} else {
int oldHeight = Integer.MIN_VALUE;
if (lp.height == 0 && lp.weight > 0) {
// heightMode is either UNSPECIFIED or AT_MOST, and this
// child wanted to stretch to fill available space.
// Translate that to WRAP_CONTENT so that it does not end up
// with a height of 0
oldHeight = 0;
lp.height = LayoutParams.WRAP_CONTENT;
}
// Determine how big this child would like to be. If this or
// previous children have given a weight, then we allow it to
// use all available space (and we will shrink things later
// if needed).
measureChildBeforeLayout(
child, i, widthMeasureSpec, 0, heightMeasureSpec,
totalWeight == 0 ? mTotalLength : 0);
if (oldHeight != Integer.MIN_VALUE) {
lp.height = oldHeight;
}
final int childHeight = child.getMeasuredHeight();
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + childHeight + lp.topMargin +
lp.bottomMargin + getNextLocationOffset(child));
if (useLargestChild) {
largestChildHeight = Math.max(childHeight, largestChildHeight);
}
}
/**
* If applicable, compute the additional offset to the child‘s baseline
* we‘ll need later when asked {@link #getBaseline}.
*/
if ((baselineChildIndex >= 0) && (baselineChildIndex == i + 1)) {
mBaselineChildTop = mTotalLength;
}
// if we are trying to use a child index for our baseline, the above
// book keeping only works if there are no children above it with
// weight. fail fast to aid the developer.
if (i < baselineChildIndex && lp.weight > 0) {
throw new RuntimeException("A child of LinearLayout with index "
+ "less than mBaselineAlignedChildIndex has weight > 0, which "
+ "won‘t work. Either remove the weight, or don‘t set "
+ "mBaselineAlignedChildIndex.");
}
boolean matchWidthLocally = false;
if (widthMode != MeasureSpec.EXACTLY && lp.width == LayoutParams.MATCH_PARENT) {
// The width of the linear layout will scale, and at least one
// child said it wanted to match our width. Set a flag
// indicating that we need to remeasure at least that view when
// we know our width.
matchWidth = true;
matchWidthLocally = true;
}
final int margin = lp.leftMargin + lp.rightMargin;
final int measuredWidth = child.getMeasuredWidth() + margin;
maxWidth = Math.max(maxWidth, measuredWidth);
childState = combineMeasuredStates(childState, child.getMeasuredState());
allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
if (lp.weight > 0) {
/*
* Widths of weighted Views are bogus if we end up
* remeasuring, so keep them separate.
*/
weightedMaxWidth = Math.max(weightedMaxWidth,
matchWidthLocally ? margin : measuredWidth);
} else {
alternativeMaxWidth = Math.max(alternativeMaxWidth,
matchWidthLocally ? margin : measuredWidth);
}
i += getChildrenSkipCount(child, i);
}
if (mTotalLength > 0 && hasDividerBeforeChildAt(count)) {
mTotalLength += mDividerHeight;
}
if (useLargestChild &&
(heightMode == MeasureSpec.AT_MOST || heightMode == MeasureSpec.UNSPECIFIED)) {
mTotalLength = 0;
for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i);
if (child == null) {
mTotalLength += measureNullChild(i);
continue;
}
if (child.getVisibility() == GONE) {
i += getChildrenSkipCount(child, i);
continue;
}
final LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams)
child.getLayoutParams();
// Account for negative margins
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + largestChildHeight +
lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
}
}
// Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom;
int heightSize = mTotalLength;
// Check against our minimum height
heightSize = Math.max(heightSize, getSuggestedMinimumHeight());
// Reconcile our calculated size with the heightMeasureSpec
int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0);
heightSize = heightSizeAndState & MEASURED_SIZE_MASK;
// Either expand children with weight to take up available space or
// shrink them if they extend beyond our current bounds. If we skipped
// measurement on any children, we need to measure them now.
int delta = heightSize - mTotalLength;
if (skippedMeasure || delta != 0 && totalWeight > 0.0f) {
float weightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight;
mTotalLength = 0;
for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i);
if (child.getVisibility() == View.GONE) {
continue;
}
LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams();
float childExtra = lp.weight;
if (childExtra > 0) {
// Child said it could absorb extra space -- give him his share
int share = (int) (childExtra * delta / weightSum);
weightSum -= childExtra;
delta -= share;
final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
mPaddingLeft + mPaddingRight +
lp.leftMargin + lp.rightMargin, lp.width);
// TODO: Use a field like lp.isMeasured to figure out if this
// child has been previously measured
if ((lp.height != 0) || (heightMode != MeasureSpec.EXACTLY)) {
// child was measured once already above...
// base new measurement on stored values
int childHeight = child.getMeasuredHeight() + share;
if (childHeight < 0) {
childHeight = 0;
}
child.measure(childWidthMeasureSpec,
MeasureSpec.makeMeasureSpec(childHeight, MeasureSpec.EXACTLY));
} else {
// child was skipped in the loop above.
// Measure for this first time here
child.measure(childWidthMeasureSpec,
MeasureSpec.makeMeasureSpec(share > 0 ? share : 0,
MeasureSpec.EXACTLY));
}
// Child may now not fit in vertical dimension.
childState = combineMeasuredStates(childState, child.getMeasuredState()
& (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT));
}
final int margin = lp.leftMargin + lp.rightMargin;
final int measuredWidth = child.getMeasuredWidth() + margin;
maxWidth = Math.max(maxWidth, measuredWidth);
boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY &&
lp.width == LayoutParams.MATCH_PARENT;
alternativeMaxWidth = Math.max(alternativeMaxWidth,
matchWidthLocally ? margin : measuredWidth);
allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() +
lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
}
// Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom;
// TODO: Should we recompute the heightSpec based on the new total length?
} else {
alternativeMaxWidth = Math.max(alternativeMaxWidth,
weightedMaxWidth);
// We have no limit, so make all weighted views as tall as the largest child.
// Children will have already been measured once.
if (useLargestChild && heightMode != MeasureSpec.EXACTLY) {
for (int i = 0; i < count; i++) {
final View child = getVirtualChildAt(i);
if (child == null || child.getVisibility() == View.GONE) {
continue;
}
final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams();
float childExtra = lp.weight;
if (childExtra > 0) {
child.measure(
MeasureSpec.makeMeasureSpec(child.getMeasuredWidth(),
MeasureSpec.EXACTLY),
MeasureSpec.makeMeasureSpec(largestChildHeight,
MeasureSpec.EXACTLY));
}
}
}
}
if (!allFillParent && widthMode != MeasureSpec.EXACTLY) {
maxWidth = alternativeMaxWidth;
}
maxWidth += mPaddingLeft + mPaddingRight;
// Check against our minimum width
maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());
setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
heightSizeAndState);
if (matchWidth) {
forceUniformWidth(count, heightMeasureSpec);
}
}
整个方法代码不长,就300行左右,但是思路十分清晰 我们根据流程,一步一步来看
首先是初始化了一堆变量
我们挑几个重要的看
//记录内部使用的高度,别被字面意思误导了以为是LinearLayout的高度
mTotalLength = 0;
//权重值的总和
float totalWeight = 0;
//子view的数量,
final int count = getVirtualChildCount();
//其实调用的都是getChildCount(),外面套一层getVirtualChildCount()
//可能是为了让读者更好的理解
int getVirtualChildCount() {
return getChildCount();
}
//LinearLayout的高度模式和宽度模式
//如果这部分知识不理解的需要去看下Measure的过程
final int widthMode = MeasureSpec.getMode(widthMeasureSpec);
final int heightMode=MeasureSpec.getMode(heightMeasureSpec);
初始化变量之后,就开始遍历所有子View了,然后对子View进行测量
//首先把子View取出來
final View child = getVirtualChildAt(i);
//如果子View是null就继续测量下一个子View
if (child == null) {
mTotalLength += measureNullChild(i);
continue;
}
//如果子View是GONE的也不算在总高度里面,这里也能看出GONE和INVISIBLE的区别
if (child.getVisibility() == View.GONE) {
i += getChildrenSkipCount(child, i);
continue;
}
//如果有分割线,就把分割线高度加上
if (hasDividerBeforeChildAt(i)) {
mTotalLength += mDividerHeight;
}
然后
//有时候我们在代码里面通过Inflater服务,动态加载一个布局,然后去设置他的LayoutParams,如果不引用父容器的LayoutParams就会报一个强转错误,原因就在这个 父容器在add,measure的时候都会把子View的LayoutParams强转成自己的类型
LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams();
//计入总权重
totalWeight += lp.weight;
//这里就值得注意下了如果当前的LinearLayout是EXACTLY模式,且子view的高度为0,且权重大于0
//这个子view只有在LinearLayout高度有剩余的时候,才会根据权重的占比去平分剩余空间
//上文说的二次测量也就指的这部分
if (heightMode == MeasureSpec.EXACTLY && lp.height == 0 && lp.weight > 0) {
// Optimization: don‘t bother measuring children who are going to use
// leftover space. These views will get measured again down below if
// there is any leftover space.
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + lp.topMargin + lp.bottomMargin);
skippedMeasure = true;
}
//如果不是上述的情况
else {
int oldHeight = Integer.MIN_VALUE;
if (lp.height == 0 && lp.weight > 0) {
// heightMode is either UNSPECIFIED or AT_MOST, and this
// child wanted to stretch to fill available space.
// Translate that to WRAP_CONTENT so that it does not end up
// with a height of 0
//这里其实官方的注释讲了也挺清楚的,到了这步,当前的LinearLayout的模式
//肯定是UNSPECIFIED或者MOST,因为EXACTLY模式会进入上一个判断
//然后把子View的高度赋值成-1(WRAP_CONTENT)
oldHeight = 0;
lp.height = LayoutParams.WRAP_CONTENT;
}
// Determine how big this child would like to be. If this or
// previous children have given a weight, then we allow it to
// use all available space (and we will shrink things later
// if needed).
//这里就开始测算子View了
//如果当前的LinearLayout不是EXACTLY模式,且子View的weight大于0,优先会把当前LinearLayout的全部可用高度用于子View测量
measureChildBeforeLayout(
child, i, widthMeasureSpec, 0, heightMeasureSpec,
totalWeight == 0 ? mTotalLength : 0);
// 重置子控件高度,然后进行精确赋值
if (oldHeight != Integer.MIN_VALUE) {
lp.height = oldHeight;
}
final int childHeight = child.getMeasuredHeight();
final int totalLength = mTotalLength;
//加上子View的margin值
mTotalLength = Math.max(totalLength, totalLength+childHeight + lp.topMargin +lp.bottomMargin + getNextLocationOffset(child));
if (useLargestChild) {
largestChildHeight = Math.max(childHeight, largestChildHeight);
}
}
//totalWeight == 0 ? mTotalLength : 0
//这里的totalHeight就是有这个决定的
//如果为0,就会把所有可用高度给子View
void measureChildBeforeLayout(View child, int childIndex,
int widthMeasureSpec, int totalWidth, int heightMeasureSpec,int totalHeight) {
measureChildWithMargins(child, widthMeasureSpec, totalWidth, heightMeasureSpec, totalHeight);
}
//接着看这个方法是如何实现的
protected void measureChildWithMargins(View child,
int parentWidthMeasureSpec, int widthUsed,
int parentHeightMeasureSpec, int heightUsed) {
final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();
//这个就和普通的ViewGroup实现方法一样了,根据子View的LayoutParams和父容器的MeasureSpec共同决定了子View的大小
//getChildMeasureSpec是属于ViewGroup的方法
final int childWidthMeasureSpec = getChildMeasureSpec(
parentWidthMeasureSpec,
mPaddingLeft + mPaddingRight + lp.leftMargin +
final int childHeightMeasureSpec getChildMeasureSpec(
parentHeightMeasureSpec,
mPaddingTop + mPaddingBottom + lp.topMargin
+ lp.bottomMargin + heightUsed, lp.height);
child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
}
//在这两段代码之间还有些杂七杂八的处理,如果读者有兴趣可以自己阅读分析下
//当测量完子View的大小后,总高度会再加上padding的高度
// Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom;
int heightSize = mTotalLength;
// Check against our minimum height
//如果设置了minimumheight属性,会根据当前使用高度和最小高度进行比较
//然后取两者中大的值
heightSize = Math.max(heightSize, getSuggestedMinimumHeight());
// Reconcile our calculated size with the heightMeasureSpec
int heightSizeAndState = resolveSizeAndState(heightSize, heightMeasureSpec, 0);
heightSize = heightSizeAndState & MEASURED_SIZE_MASK;
// Either expand children with weight to take up available space or
// shrink them if they extend beyond our current bounds. If we skipped
// measurement on any children, we need to measure them now.
//到了这里,会再对带weight属性的子View进行一次测绘
//首先计算属于高度
int delta = heightSize - mTotalLength;
if (skippedMeasure || delta != 0 && totalWeight > 0.0f) {
//如果设置了weightSum就会使用你设置的weightSum,否则采用当前所有子View的权重和。所以如果要手动设置weightSum的时候,千万别计算错误哦
float weightSum = mWeightSum > 0.0f ? mWeightSum : totalWeight;
mTotalLength = 0;
//这里的代码就和第一次测量很像了
for (int i = 0; i < count; ++i) {
final View child = getVirtualChildAt(i);
if (child.getVisibility() == View.GONE) {
continue;
}
LinearLayout.LayoutParams lp = (LinearLayout.LayoutParams) child.getLayoutParams();
float childExtra = lp.weight;
if (childExtra > 0) {
// Child said it could absorb extra space -- give him his share
//子控件的weight占比*剩余高度
int share = (int) (childExtra * delta / weightSum);
weightSum -= childExtra;
//剩余高度减去分配出去的高度
delta -= share;
final int childWidthMeasureSpec = getChildMeasureSpec(widthMeasureSpec,
mPaddingLeft + mPaddingRight +
lp.leftMargin + lp.rightMargin, lp.width);
// TODO: Use a field like lp.isMeasured to figure out if this
// child has been previously measured
//如果是当前LinearLayout的模式是EXACTLY
//那么这个子View是没有被测量过的,就需要测量一次
//如果不是EXACTLY的,在第一次循环里就被测量一些了
if ((lp.height != 0) || (heightMode != MeasureSpec.EXACTLY)) {
// child was measured once already above...
// base new measurement on stored values
//如果是非EXACTLY模式下的子View就再加上
//weight分配占比*剩余高度
int childHeight = child.getMeasuredHeight() + share;
if (childHeight < 0) {
childHeight = 0;
}
//重新测量一次,因为高度发生了变化
child.measure(childWidthMeasureSpec,
MeasureSpec.makeMeasureSpec(childHeight, MeasureSpec.EXACTLY));
} else {
// child was skipped in the loop above.
// Measure for this first time here
//如果是EXACTLY模式下的
//这里只会把weight占比所拥有的高度分配给你的子View
child.measure(childWidthMeasureSpec,
MeasureSpec.makeMeasureSpec(share > 0 ? share : 0,
MeasureSpec.EXACTLY));
}
// Child may now not fit in vertical dimension.
childState = combineMeasuredStates(childState, child.getMeasuredState()
& (MEASURED_STATE_MASK>>MEASURED_HEIGHT_STATE_SHIFT));
}
final int margin = lp.leftMargin + lp.rightMargin;
final int measuredWidth = child.getMeasuredWidth() + margin;
maxWidth = Math.max(maxWidth, measuredWidth);
boolean matchWidthLocally = widthMode != MeasureSpec.EXACTLY &&
lp.width == LayoutParams.MATCH_PARENT;
alternativeMaxWidth = Math.max(alternativeMaxWidth,
matchWidthLocally ? margin : measuredWidth);
allFillParent = allFillParent && lp.width == LayoutParams.MATCH_PARENT;
final int totalLength = mTotalLength;
mTotalLength = Math.max(totalLength, totalLength + child.getMeasuredHeight() +
lp.topMargin + lp.bottomMargin + getNextLocationOffset(child));
}
// Add in our padding
mTotalLength += mPaddingTop + mPaddingBottom;
// TODO: Should we recompute the heightSpec based on the new total length?
}
上述就是onMeasure的主要分析
注意点
1.会根据当前LinearLayout的模式分成2条支线,如果是EXACTLY模式下的weight不为0,且高度设置为0的子View优先级是最低的。如果LinearLayout剩余空间不足,就会不显示
但是如果是AT_MOST的weight不为0,且高度设置为0就会优先获得高度
2.为LinearLayout动态添加子View的时候,子View的LayoutParams一定要是LinearLayout的内部类(适用于其他ViewGroup子类)
举个例子
所有的源码解析都是我们自己根据代码的推论,配合几个demo跑下会理解了更深
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<TextView
android:layout_width="match_parent"
android:layout_height="300dp"
android:layout_weight="2"
android:background="@android:color/holo_orange_dark" />
<TextView
android:layout_width="match_parent"
android:layout_height="fill_parent"
android:background="@android:color/holo_blue_dark" />
</LinearLayout>
在分析之前大伙儿先预测下结果,思索下再往下看
假设我们的屏幕是1000dp的高度
父容器LinearLayout是EXACTLY模式,但是TextView1本身的height是300dp,所以会进入第一次测量
TextView1 在第一次测算时拿到了300dp的高度
然后TextView因为是match,所以会拿到1000dp的高度
然后由于有weight的子view,所以进入第二次测量
int delta = heightSize - mTotalLength;
delta = 1000 - 1300; // 结果是-300
int share = (int) (childExtra * delta / weightSum);
share = 2.0 * -300 / 2.0 //share的结果也是-300
MeasureSpec.makeMeasureSpec(share > 0 ? share : 0,
MeasureSpec.EXACTL);
所以最后TextView1的高度是0.不会显示在屏幕上,屏幕上应该被Textview2充满。
不信的话,大家可以试一下
好了LinearLayout的主要测量就讲到这了
onLayout()和onDraw()相对来说就比较简单,大家自己看下就好了
标签:
原文地址:http://blog.csdn.net/wz249863091/article/details/51702980