码迷,mamicode.com
首页 > 其他好文 > 详细

POJ Multiple (BFS,同余定理)

时间:2014-08-05 00:47:58      阅读:285      评论:0      收藏:0      [点我收藏+]

标签:algorithm   bfs   同余定理   

http://poj.org/problem?id=1465

Multiple
Time Limit: 1000MS   Memory Limit: 32768K
Total Submissions: 6164   Accepted: 1339

Description

a program that, given a natural number N between 0 and 4999 (inclusively), and M distinct decimal digits X1,X2..XM (at least one), finds the smallest strictly positive multiple of N that has no other digits besides X1,X2..XM (if such a multiple exists).

Input

The input has several data sets separated by an empty line, each data set having the following format: 

On the first line - the number N 
On the second line - the number M 
On the following M lines - the digits X1,X2..XM.

Output

For each data set, the program should write to standard output on a single line the multiple, if such a multiple exists, and 0 otherwise. 

An example of input and output:

Sample Input

22
3
7
0
1

2
1
1

Sample Output

110
0

Source



题意:

给出一个整数N,和M个0~9的数,求N的一个最小倍数,且该数仅由这M个数构成,不存在则输出0。

分析:

如果存在最终的数,一定可以写成A1*10^(k-1)+A2*10^(k-2)+...+Ak,Ai属于给出的M个数的集合。k有可能很大,64位整数也可能存不下。注意到最后的结果是N的倍数,假设结果是X,则有X%N=0,注意到结果的多项式形式,显然能想到使用同余定理。我们需要从1位扩展到k位(当然要一步步来),可以用BFS,用余数来记录状态(只需要第一个),这样状态不超过N个,一旦余数为0,我们需要的结果就出来了。


#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm
#define maxn

using namespace std;

int X[10];
int n,m;
int q[5555];
int st[5555];
bool __hash[5555];

struct __node
{
    int x,mod,fir;
}node[5555];

void write(int x)
{
    int top=-1;

    for (;~x;x=node[x].fir)
        st[++top]=node[x].x;

    while (top>=0)
        printf("%d",st[top--]);

    puts("");
}

void bfs()
{
    int f=0,r=-1,cnt=0;
    if (!n)
    {
        printf("%d\n",0);
        return ;
    }
    memset(__hash,0,sizeof __hash);
    for (int i=0;i<m;i++)
    {
        if (!X[i]) continue;
        int mod=X[i]%n;
        if (!mod)
        {
            printf("%d\n",X[i]);
            return ;
        }
        if (__hash[mod])    continue;
        __hash[mod]=true;
        node[cnt]=(__node){X[i],mod,-1};
        q[++r]=cnt;
        cnt++;
    }

    while (f<=r)
    {
        int x=q[f++];
        for (int i=0;i<m;i++)
        {
            int mod=(node[x].mod*10+X[i])%n;
            if (__hash[mod])    continue;
            __hash[mod]=true;
            node[cnt]=(__node){X[i],mod,x};
            q[++r]=cnt;
            if (!mod)
            {
                write(cnt);
                return ;
            }
            cnt++;
        }
    }

    printf("0\n");
}

int main()
{
    #ifndef ONLINE_JUDGE
        freopen("/home/fcbruce/文档/code/t","r",stdin);
    #endif // ONLINE_JUDGE

    while (~scanf("%d",&n))
    {
        scanf("%d",&m);

        for (int i=0;i<m;i++)
            scanf("%d",X+i);

        sort(X,X+m);

        bfs();
    }


    return 0;
}


POJ Multiple (BFS,同余定理),布布扣,bubuko.com

POJ Multiple (BFS,同余定理)

标签:algorithm   bfs   同余定理   

原文地址:http://blog.csdn.net/u012965890/article/details/38376061

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!