码迷,mamicode.com
首页 > 其他好文 > 详细

Spark技术内幕:Worker源码与架构解析

时间:2014-08-05 00:50:08      阅读:364      评论:0      收藏:0      [点我收藏+]

标签:spark

首先通过一张Spark的架构图来了解Worker在Spark中的作用和地位:

bubuko.com,布布扣

Worker所起的作用有以下几个:

1. 接受Master的指令,启动或者杀掉Executor

2. 接受Master的指令,启动或者杀掉Driver

3. 报告Executor/Driver的状态到Master

4. 心跳到Master,心跳超时则Master认为Worker已经挂了不能工作了

5. 向GUI报告Worker的状态


说白了,Worker就是整个集群真正干活的。首先看一下Worker重要的数据结构:

  val executors = new HashMap[String, ExecutorRunner]
  val finishedExecutors = new HashMap[String, ExecutorRunner]
  val drivers = new HashMap[String, DriverRunner]
  val finishedDrivers = new HashMap[String, DriverRunner]

这些Hash Map存储了名字和实体时间的对应关系,方便通过名字直接找到实体进行调用。

看一下如何启动Executor:

case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
      if (masterUrl != activeMasterUrl) {
        logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
      } else {
        try {
          logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
          val manager = new ExecutorRunner(appId, execId, appDesc, cores_, memory_,
            self, workerId, host,
            appDesc.sparkHome.map(userSparkHome => new File(userSparkHome)).getOrElse(sparkHome),
            workDir, akkaUrl, ExecutorState.RUNNING)
          executors(appId + "/" + execId) = manager
          manager.start()
          coresUsed += cores_
          memoryUsed += memory_
          masterLock.synchronized {
            master ! ExecutorStateChanged(appId, execId, manager.state, None, None)
          }
        } catch {
          case e: Exception => {
            logError("Failed to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
            if (executors.contains(appId + "/" + execId)) {
              executors(appId + "/" + execId).kill()
              executors -= appId + "/" + execId
            }
            masterLock.synchronized {
              master ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, None, None)
            }
          }
        }


1行到3行是验证该命令是否发自一个合法的Master。7到10行定义了一个ExecutorRunner,实际上系统并没有一个类叫做Executor,我们所说的Executor实际上是由ExecutorRunner实现的,这个名字起得也比较贴切。11行将新建的executor放到上面提到的Hash Map中。然后12行启动这个Executor。13行和14行将现在已经使用的core和memory进行的统计。15到17行实际上是向Master报告Executor的状态。这里需要加锁。

如果在这过程中有异常抛出,那么需要check是否是executor已经加到Hash Map中,如果有则首先停止它,然后从Hash Map中删除它。并且向Master report Executor是FAILED的。Master会重新启动新的Executor。


接下来看一下Driver的Hash Map的使用,通过KillDriver:

    case KillDriver(driverId) => {
      logInfo(s"Asked to kill driver $driverId")
      drivers.get(driverId) match {
        case Some(runner) =>
          runner.kill()
        case None =>
          logError(s"Asked to kill unknown driver $driverId")
      }
    }

这个KillDirver的命令实际上由Master发出的,而Master实际上接收了Client的kill driver的命令。这个也可以看出Scala语言的简洁性。



Spark技术内幕:Worker源码与架构解析,布布扣,bubuko.com

Spark技术内幕:Worker源码与架构解析

标签:spark

原文地址:http://blog.csdn.net/anzhsoft/article/details/38358817

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!