Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1,
A2, ... , AN. -1000000000 ≤
Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa,
Aa+1, ... ,
Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa,
Aa+1, ... ,
Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
线段树区间更新。
#include <stdio.h> #include <string.h> #include <algorithm> #include <math.h> #define lson o << 1, l, m #define rson o << 1|1, m+1, r using namespace std; typedef long long LL; const int MAX=0x3f3f3f3f; const int maxn = 111111; int n, q, a, b, c; LL sum[maxn<<2], add[maxn<<2]; void up(int o) { sum[o] = sum[o<<1] + sum[o<<1|1]; } void down(int o, int m) { if(add[o] != 0) { add[o<<1] += add[o]; add[o<<1|1] += add[o]; sum[o<<1] += add[o]*(m-(m>>1)); sum[o<<1|1] += add[o]*(m>>1); add[o] = 0; } } void build(int o, int l, int r) { add[o] = 0; if(l == r) scanf("%I64d", &sum[o]); else { int m = (l+r) >> 1; build(lson); build(rson); up(o); } } LL query(int o, int l, int r) { if(a <= l && r <= b) return sum[o]; down(o, r-l+1); int m = (l+r) >> 1; LL ans = 0; if(a <= m) ans += query(lson); if(m < b) ans += query(rson); return ans; } void update(int o, int l, int r) { if(a <= l && r <= b) { add[o] += c; sum[o] += (LL)c*(r-l+1); return; } int m = (l+r) >> 1; down(o, r-l+1); if(a <= m) update(lson); if(m < b) update(rson); up(o); } int main() { scanf("%d%d", &n, &q); build(1, 1, n); while(q--) { char op[3]; scanf("%s",op); if(op[0] == 'C') { scanf("%d%d%d", &a, &b, &c); update(1, 1, n); } else { scanf("%d%d", &a, &b); printf("%I64d\n", query(1, 1, n)); } } return 0; }
POJ 3468 A Simple Problem with Integers(线段树 区间更新),布布扣,bubuko.com
POJ 3468 A Simple Problem with Integers(线段树 区间更新)
原文地址:http://blog.csdn.net/u013923947/article/details/38380765