标签:
基于策略的路由比传统路由在功能上更强大,使用更灵活,它使网络管理员不仅能够根据目的地址而且能够根据报文大小、应用或IP源地址等属性来选择转发路径。
例子:
在 Linux 系统启动时,内核会为路由策略数据库配置三条缺省的规则:
不要混淆路由表和策略:规则指向路由表,多个规则可以引用一个路由表,而且某些路由表可以没有策略指向它。如果系统管理员删除了指向某个路由表的所有规则,这个表就没有用了,但是仍然存在,直到里面的所有路由都被删除,它才会消失。
(资料来源)
所谓路由表,指的是路由器或者其他互联网网络设备上存储的表,该表中存有到达特定网络终端的路径,在某些情况下,还有一些与这些路径相关的度量。路由器的主要工作就是为经过路由器的每个数据包寻找一条最佳的传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。为了完成这项工作,在路由器中保存着各种传输路径的相关数据——路由表(Routing Table),供路由选择时使用,表中包含的信息决定了数据转发的策略。打个比方,路由表就像我们平时使用的地图一样,标识着各种路线,路由表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路由表根据其建立的方法,可以分为动态路由表和静态路由表。
linux 系统中,可以自定义从 1-252个路由表,其中,linux系统维护了4个路由表:
路由表的查看可有以下二种方法:
路由表序号和表名的对应关系在 /etc/iproute2/rt_tables 文件中,可手动编辑。路由表添加完毕即时生效,下面为实例:
以下面的路由表为例:
Destination Netmask Gateway Interface Metric
0.0.0.0 0.0.0.0 192.168.123.254 192.168.123.88 1 #缺省路由,目的地址不在本路由表中的数据包,经过本机的 192.168.123.88 接口发到下一个路由器 192.168.123.254
127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1 #发给本机的网络包
192.168.123.0 255.255.255.0 192.168.123.68 192.168.123.68 1 #直连路由。目的地址为 192.168.123.0/24 的包发到本机 192.168.123.88 接口
192.168.123.88 255.255.255.255 127.0.0.1 127.0.0.1 1 #目的地址为 192.168.123.88的包是发给本机的包
192.168.123.255 255.255.255.255 192.168.123.88 192.168.123.88 1 #广播包的网段是 192.168.123.0/24,经过 192.168.123.88 接口发出去
224.0.0.0 224.0.0.0 192.168.123.88 192.168.123.88 1 #多播包,经过 192.168.123.88 接口发出去
255.255.255.255 255.255.255.255 192.168.123.68 192.168.123.68 1 #全网广播包
Default Gateway: 192.168.123.254
各字段说明:
根据子网掩码,可以将路由分为三种类型:
Destination Gateway Genmask Flags Metric Ref Use Iface ----------- ------- ------- ----- ------ --- --- ----- 10.0.0.10 192.168.1.1 255.255.255.255 UH 0 0 0 eth0
Destination Gateway Genmask Flags Metric Ref Use Iface ----------- ------- ------- ----- ----- --- --- ----- 192.19.12 192.168.1.1 255.255.255.0 UN 0 0 0 eth0
Destination Gateway Genmask Flags Metric Ref Use Iface ----------- ------- ------- ----- ------ --- --- ----- default 192.168.1.1 0.0.0.0 UG 0 0 0 eth0
设置和查看路由表都可以用 route 命令,设置内核路由表的命令格式是:route [add|del] [-net|-host] target [netmask Nm] [gw Gw] [[dev] If]
其中:
比如:
关于 src 属性:
当一个主机有多个网卡配置了多个 IP 的时候,对于它产生的网络包,可以在路由选择时设置源 IP 地址。比如:
ip route add 78.22.45.0/24 via 10.45.22.1 src 10.45.22.12 (发到 78.22.45.0/24 网段的网络包,下一跳的路由器 IP 是 10.45.22.1,包的源IP地址设为10.45.22.12)。
要注意的是,src 选项只会影响该 host 上产生的网络包。如果是一个被路由的外来包,明显地它已经带有了一个源 IP 地址,这时候,src 参数的配置对它没有任何影响,除非你使用 NAT 来改变它。对 Neutron 来说,qrouter 和 qif namespace 中的路由表中的 src 都没有实际意义,因为它们只会处理外来的网络包。
静态路由是指由用户或网络管理员手工配置的路由信息。当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。当然,网管员也可以通过对路由器进行设置使之成为共享的。静态路由一般适用于比较简单的网络环境,在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。
以上面的拓扑结构为例,在没有配置路由的情况下,计算机1 和 2 无法互相通信,因为 1 发给 2 的包在到达路由器 A 后,它不知道怎么转发它。B 也同样。管理员可以配置如下的静态路由来实现 1 和 2 之间的通信:
计算机配置默认网关:
路由器配置:
或者
(来源:http://baike.baidu.com/view/911.htm)
动态路由是指路由器能够自动地建立自己的路由表,并且能够根据实际情况的变化适时地进行调整。它是与静态路由相对的一个概念,指路由器能够根据路由器之间的交换的特定路由信息自动地建立自己的路由表,并且能够根据链路和节点的变化适时地进行自动调整。当网络中节点或节点间的链路发生故障,或存在其它可用路由时,动态路由可以自行选择最佳的可用路由并继续转发报文。
常见的动态路由协议有以下几个:路由信息协议(RIP)、OSPF(Open Shortest Path First开放式最短路径优先)、IS-IS(Intermediate System-to-Intermediate System,中间系统到中间系统)、边界网关协议(BGP)是运行于 TCP 上的一种自治系统的路由协议。
(来源:http://baike.baidu.com/view/897.htm)
以一例子来说明:公司内网要求192.168.0.100 以内的使用 10.0.0.1 网关上网 (电信),其他IP使用 20.0.0.1 (网通)上网。
因为 mangle 的处理是优先于 nat 和 fiter 表的,所以在数据包到达之后先打上标记,之后再通过 ip rule 规则,对应的数据包使用相应的路由表进行路由,最后读取路由表信息,将数据包送出网关。
(来源:使用 ip route , ip rule , iptables 配置策略路由。这里 有一个更详细的例子)
这里可以看出 Netfilter 处理网络包的先后顺序:接收网络包,先 DNAT,然后查路由策略,查路由策略指定的路由表做路由,然后 SNAT,再发出网络包。
我们在 linux 机器上,使用 traceroute 来获知从你的计算机到互联网另一端的主机是走的什么路径。当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一样,但基本上来说大部分时候所走的路由是相同的。在 MS Windows 中该工具为 tracert。 在大多数情况下,我们会在linux主机系统下,直接执行命令行:traceroute hostname;而在Windows系统下是执行tracert的命令: tracert hostname。
(1)例子
[root@localhost ~]# traceroute www.baidu.com traceroute to www.baidu.com (61.135.169.125), 30 hops max, 40 byte packets 1 192.168.74.2 (192.168.74.2) 2.606 ms 2.771 ms 2.950 ms 2 211.151.56.57 (211.151.56.57) 0.596 ms 0.598 ms 0.591 ms 3 211.151.227.206 (211.151.227.206) 0.546 ms 0.544 ms 0.538 ms 4 210.77.139.145 (210.77.139.145) 0.710 ms 0.748 ms 0.801 ms 5 202.106.42.101 (202.106.42.101) 6.759 ms 6.945 ms 7.107 ms 6 61.148.154.97 (61.148.154.97) 718.908 ms * bt-228-025.bta.net.cn (202.106.228.25) 5.177 ms 7 124.65.58.213 (124.65.58.213) 4.343 ms 4.336 ms 4.367 ms 8 202.106.35.190 (202.106.35.190) 1.795 ms 61.148.156.138 (61.148.156.138) 1.899 ms 1.951 ms 9 * * * 30 * * *
说明:
(2)原理
Traceroute 程序的设计是利用 ICMP 及 IP header 的 TTL(Time To Live)栏位(field)。
Traceroute 在送出 UDP datagrams 到目的地时,它所选择送达的 port number 是一个一般应用程序都不会用的号码(30000 以上),所以当此 UDP datagram 到达目的地后该主机会送回一个「ICMP port unreachable」的消息,而当traceroute 收到这个消息时,便知道目的地已经到达了。所以traceroute 在Server端也是没有所谓的Daemon 程式。Traceroute提取发 ICMP TTL 到期消息设备的 IP 地址并作域名解析。每次 ,Traceroute 都打印出一系列数据,包括所经过的路由设备的域名及 IP地址,三个包每次来回所花时间。
(以上资料来自互联网)
参考网址:http://www.cnblogs.com/sammyliu/p/4713562.html
标签:
原文地址:http://www.cnblogs.com/yldf/p/1e19442f0dcd926c50ded4c667199b26.html