标签:
转载http://blog.csdn.net/wuwuhuizheyisheng/article/details/8239599
STM32的GPIO总结
作者:JCY
该文是自己学习了一段STM32后所写,是对STM32使用固件库编程最简单的一段程序,是对固件库函数的一部分进行解析。如有错误之处请指正,不胜感激。
首先来看一下GPIO_Init函数的原型void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)。这个函数的实现是在Stm32f10x_gpio.c文件中,若要使用该函数在相应的应用程序的前面包含Stm32f10x_gpio.h头文件。
该函数的第一个参数为GPIO_TypeDef,它是一个结构体类型,该类型在Stm32f10x.h中被定义。定义的原型为:
typedef struct
{
__IO uint32_t CRL;
__IO uint32_t CRH;
__IO uint32_t IDR;
__IO uint32_t ODR;
__IO uint32_t BSRR;
__IO uint32_t BRR;
__IO uint32_t LCKR;
} GPIO_TypeDef;
在这个结构体类型当中有7个32(8字节)位的变量,这些变量在存储空间的地址是相邻的。打开STM32数据手册不难看出,每个端口对应有16的引脚,由7个寄存器控制GPIO行为,并且这7个寄存器的顺序也是连续的。各个端口都有相同的结构。STM32的固件库就将这种结构抽象出一个类型GPIO_TypeDef。在操作寄存器之前你一定要有一个寄存器映射的操作,否则无法访问指定的寄存器,在这里我们只需要映射一次而不需要映射7此。这样做是不是很方便,也提高了代码的可读性,使代码规范化。
既然GPIO_Init的第一个参数GPIO_TypeDef的指针变量,这个指针变量存放的就是某一个端口的首地址。某一个程序的调用语句是这样的GPIO_Init(GPIOD,&GPIO_InitStructure); //初始化GPIOD
GPID是固件库中定义的一个宏,在编译的时候会宏展开,先列出与GPIOD端口地址映射有关的宏定义如下:
#define GPIOD ((GPIO_TypeDef *) GPIOD_BASE)
#define GPIOD_BASE (APB2PERIPH_BASE + 0x1400)
#define APB2PERIPH_BASE (PERIPH_BASE + 0x10000)
#define PERIPH_BASE ((uint32_t)0x40000000)
看到了0x4000 0000这个数字是不是非常熟悉,它是外设的首地址。在STM32芯片的内部STM32有两个,一个叫APB1,一个叫APB2。每一个APB桥都会管理很多外设。STM32F10x把这两个APB的外设寄存器访问地址放在了不同的存储空间。0x10000就是APB2外设的存储空间首地址相对于整个外设的偏移。而0x1400是GPIOD端口外设首地址相对于APB2外设的存储空间首地址的偏移。这样就找到了GPIOD外设的基地址了!而((GPIO_TypeDef *) GPIOD_BASE)可以同时实现所有控制GPIOD端口的7个寄存器的映射。若访问某一个寄存器只需要通过指向GPIO_TypeDef 变量的指针。
第二个参数的为GPIO_InitTypeDef* GPIO_InitStruct。就是一个指向GPIO _InitTypeDef的地址。第一个参数只找到配置的目标寄存器,第二个参数就是对相应端口如何配置的数据参数。这些参数存储在指向GPIO_InitTypeDef变量的首地址处。先列处该参数由来的一断代码
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;
GPIO_InitTypeDef 是一个结构体的变量,该变量在Stm32f10x_gpio.h头文件中被定义,定义的原型如下:
typedef struct
{
uint16_t GPIO_Pin;
GPIOSpeed_TypeDef GPIO_Speed;
GPIOMode_TypeDef GPIO_Mode;
}GPIO_InitTypeDef;
GPIO_InitTypeDef的第一个变量为GPIO_Pin是一个16为的无符号数,该数只有16位,每一位代表一个引脚,若要配置某一个端口的某一个引脚只需要把相应的位设置为1就可以了。在STM32的固件库中有如下引脚号定义:
#define GPIO_Pin_0 ((uint16_t)0x0001) /*!< Pin 0 selected */
#define GPIO_Pin_1 ((uint16_t)0x0002) /*!< Pin 1 selected */
#define GPIO_Pin_2 ((uint16_t)0x0004) /*!< Pin 2 selected */
#define GPIO_Pin_3 ((uint16_t)0x0008) /*!< Pin 3 selected */
#define GPIO_Pin_4 ((uint16_t)0x0010) /*!< Pin 4 selected */
#define GPIO_Pin_5 ((uint16_t)0x0020) /*!< Pin 5 selected */
#define GPIO_Pin_6 ((uint16_t)0x0040) /*!< Pin 6 selected */
#define GPIO_Pin_7 ((uint16_t)0x0080) /*!< Pin 7 selected */
#define GPIO_Pin_8 ((uint16_t)0x0100) /*!< Pin 8 selected */
#define GPIO_Pin_9 ((uint16_t)0x0200) /*!< Pin 9 selected */
#define GPIO_Pin_10 ((uint16_t)0x0400) /*!< Pin 10 selected */
#define GPIO_Pin_11 ((uint16_t)0x0800) /*!< Pin 11 selected */
#define GPIO_Pin_12 ((uint16_t)0x1000) /*!< Pin 12 selected */
#define GPIO_Pin_13 ((uint16_t)0x2000) /*!< Pin 13 selected */
#define GPIO_Pin_14 ((uint16_t)0x4000) /*!< Pin 14 selected */
#define GPIO_Pin_15 ((uint16_t)0x8000) /*!< Pin 15 selected */
#define GPIO_Pin_All ((uint16_t)0xFFFF) /*!< All pins selected */
使用这些定义好的宏就方便多了,要配置某几个引脚只需要把相应的引脚相或就可以了。若你要多某一个端口的所有为进行配置,那么只需要使用一个宏GPIO_Pin_All 。简单吧!哈哈!
GPIOSpeed_TypeDef是一个枚举变量,它用于存储GPIO速度的参数,它的定义如下:
typedef enum
{
GPIO_Speed_10MHz = 1,
GPIO_Speed_2MHz,
GPIO_Speed_50MHz
}GPIOSpeed_TypeDef;
通过定义可以知道,GPIOSpeed_TypeDef的变量有三种取值,那么GPIO的速度有三种,
枚举变量的值 |
对应的速度 |
1 |
10MHZ |
2 |
2MHZ |
3 |
50MHZ |
GPIOMode_TypeDef也是一个枚举变量,它用于存储GPIO工作的模式,它的定义如下:
typedef enum
{ GPIO_Mode_AIN = 0x0,
GPIO_Mode_IN_FLOATING = 0x04,
GPIO_Mode_IPD = 0x28,
GPIO_Mode_IPU = 0x48,
GPIO_Mode_Out_OD = 0x14,
GPIO_Mode_Out_PP = 0x10,
GPIO_Mode_AF_OD = 0x1C,
GPIO_Mode_AF_PP = 0x18
}GPIOMode_TypeDef;
设计这个枚举变量的可取值有一定的意义。在第四位当中只用到了其中的高两位,这两位数据用来存储到某一个引脚的模式控制位MODEx[1:0] ,而高四位用来标志某一些标志。
高四位的取值 |
意义 |
0 |
输入模式 |
1 |
输出模式 |
2 |
下拉输入 |
4 |
上拉输入 |
上面是GPIO_Init函数参数的解释。我在我们就可以进入GPIO_Init函数的内部看看了。
先把函数的代码列出,对代码的解释都放在了注释当中 ,如下:
void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
{
uint32_t currentmode = 0x00, currentpin = 0x00, pinpos = 0x00, pos = 0x00;
uint32_t tmpreg = 0x00, pinmask = 0x00;
/* Check the parameters */
assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
assert_param(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));
assert_param(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));
/*---------------------------- GPIO Mode Configuration -----------------------*/
currentmode = ((uint32_t)GPIO_InitStruct->GPIO_Mode) & ((uint32_t)0x0F);
if ((((uint32_t)GPIO_InitStruct->GPIO_Mode) & ((uint32_t)0x10)) != 0x00)//若为输出上拉就会配置GPIO的速度
{
/* Check the parameters */
assert_param(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));
/* Output mode */
currentmode |= (uint32_t)GPIO_InitStruct->GPIO_Speed;
}
/*---------------------------- GPIO CRL Configuration ------------------------*/
/* Configure the eight low port pins */
if (((uint32_t)GPIO_InitStruct->GPIO_Pin & ((uint32_t)0x00FF)) != 0x00)//若对第八个引脚进行配置,GPIO_Pin的值某一位为1就会对该引脚配置
{
tmpreg = GPIOx->CRL;//暂存GPIO控制寄存器原来的值
for (pinpos = 0x00; pinpos < 0x08; pinpos++)//扫描8次决定,查看哪一引脚需要配置,若 //需要配置则进行配置
{
pos = ((uint32_t)0x01) << pinpos;//获得要查看的某一个引脚所对应的位为1的值
/* Get the port pins position */
currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;//currentpin 的值为0或者为pos
if (currentpin == pos)//若为pos说明该位需要配置
{
pos = pinpos << 2;//pinpos 的值乘以4得到某一引脚配置位的最低位号:0,4,8......28
/* Clear the corresponding low control register bits *///用于屏蔽某一个引脚的配置位, 使这4位为0
pinmask = ((uint32_t)0x0F) << pos;
tmpreg &= ~pinmask;
/* Write the mode configuration in the corresponding bits */
tmpreg |= (currentmode << pos);//因为模式所对应的数都存放在第四位,所以需要向左移位到某一个引脚对应的配置位的最低位出,然后对存储到tmpreg 中
/* Reset the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPD)//若为输入下拉,需要打开相 应的开关
{
GPIOx->BRR = (((uint32_t)0x01) << pinpos);
}
else
{
/* Set the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPU)//若为输入下拉,需要打开 相应的开关
{
GPIOx->BSRR = (((uint32_t)0x01) << pinpos);
}
}
}
}
GPIOx->CRL = tmpreg;//对低8个引脚配置寄存器赋值
}
/*---------------------------- GPIO CRH Configuration ------------------------*/
/* Configure the eight high port pins */
if (GPIO_InitStruct->GPIO_Pin > 0x00FF)
{
tmpreg = GPIOx->CRH;
for (pinpos = 0x00; pinpos < 0x08; pinpos++)
{
pos = (((uint32_t)0x01) << (pinpos + 0x08));
/* Get the port pins position */
currentpin = ((GPIO_InitStruct->GPIO_Pin) & pos);
if (currentpin == pos)
{
pos = pinpos << 2;
/* Clear the corresponding high control register bits */
pinmask = ((uint32_t)0x0F) << pos;
tmpreg &= ~pinmask;
/* Write the mode configuration in the corresponding bits */
tmpreg |= (currentmode << pos);
/* Reset the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPD)
{
GPIOx->BRR = (((uint32_t)0x01) << (pinpos + 0x08));
}
/* Set the corresponding ODR bit */
if (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_IPU)
{
GPIOx->BSRR = (((uint32_t)0x01) << (pinpos + 0x08));
}
}
}
GPIOx->CRH = tmpreg;
}
}
assert_param函数是对参数的检测。参数要么是逻辑0或者1。IS_GPIO_ALL_PERIPH也是一个宏,宏定义为:
#define IS_GPIO_ALL_PERIPH(PERIPH) (((PERIPH) == GPIOA) || \
((PERIPH) == GPIOB) || \
((PERIPH) == GPIOC) || \
((PERIPH) == GPIOD) || \
((PERIPH) == GPIOE) || \
((PERIPH) == GPIOF) || \
((PERIPH) == GPIOG))
其他的参数检测函数当中使用的宏都是相似的,具体可以查看相应的宏定义,在此不一一列出。
对低8位的配置和对高8位的配置原理是一样的。所以在此只对低8引脚配置进行说明。
标签:
原文地址:http://www.cnblogs.com/prayer521/p/5621892.html