标签:
let us look at the definition of biharmonic deformation first:
Then take a look at the definition of biharmonic deformation fields
The difference between them is Biharmonic surface works directly with position X directly, however, Biharmonic deformation work with deformation fields(ie. displacements).
Biharmonic functions (whether positions or displacements) are solutions to the bi-Laplace equation, but
also minimizers of the “Laplacian energy”, which can be seen from: http://blog.csdn.net/seamanj/article/details/50898781 and alec jacobson‘s thesis:
the formula 3.21(biharmonic equation) is the case in here, whereas the formula 3.20(harmonic equation) is used for laplacian interpolation which can be seen from: http://blog.csdn.net/seamanj/article/details/51738180
For better understanding the source code of libigl, I firstly would like to cite a equation from the paper "Mixed Finite Elements for Variational Surface Modeling", whose details can be found on "http://blog.csdn.net/seamanj/article/details/51724020"
....................................................(*1)
now, it is time to analyze the source code:
#include <igl/colon.h>
#include <igl/harmonic.h>
#include <igl/readOBJ.h>
#include <igl/readDMAT.h>
#include <igl/viewer/Viewer.h>
#include <algorithm>
#include <iostream>
#include "tutorial_shared_path.h"
double bc_frac = 1.0;
double bc_dir = -0.03;
bool deformation_field = false;
Eigen::MatrixXd V,U,V_bc,U_bc;
Eigen::VectorXd Z;
Eigen::MatrixXi F;
Eigen::VectorXi b;
bool pre_draw(igl::viewer::Viewer & viewer)
{
using namespace Eigen;
// Determine boundary conditions
if(viewer.core.is_animating)
{
bc_frac += bc_dir;
bc_dir *= (bc_frac>=1.0 || bc_frac<=0.0?-1.0:1.0);
}
const MatrixXd U_bc_anim = V_bc+bc_frac*(U_bc-V_bc);// U_bc_anim is the actual postion of each boundary vertex.
if(deformation_field)
{
MatrixXd D;
MatrixXd D_bc = U_bc_anim - V_bc;
igl::harmonic(V,F,b,D_bc,2,D);//biharmonic deformation fields(displacements)
U = V+D;
}else
{
igl::harmonic(V,F,b,U_bc_anim,2,U);// biharmonic surface, this would smooth the surface(i.e. lose the details on the surface)
}
viewer.data.set_vertices(U);
viewer.data.compute_normals();
return false;
}
bool key_down(igl::viewer::Viewer &viewer, unsigned char key, int mods)
{
switch(key)
{
case ' ':
viewer.core.is_animating = !viewer.core.is_animating;
return true;
case 'D':
case 'd':
deformation_field = !deformation_field;
return true;
}
return false;
}
int main(int argc, char *argv[])
{
using namespace Eigen;
using namespace std;
igl::readOBJ(TUTORIAL_SHARED_PATH "/decimated-max.obj",V,F);
U=V;
// S(i) = j: j<0 (vertex i not in handle), j >= 0 (vertex i in handle j)
VectorXi S;
igl::readDMAT(TUTORIAL_SHARED_PATH "/decimated-max-selection.dmat",S);
igl::colon<int>(0,V.rows()-1,b);
b.conservativeResize(stable_partition( b.data(), b.data()+b.size(),
[&S](int i)->bool{return S(i)>=0;})-b.data());//the domain where greater than or equal 0 is in purple denoting the boundary conditions.
// Boundary conditions directly on deformed positions
U_bc.resize(b.size(),V.cols());
V_bc.resize(b.size(),V.cols());
// V_bc represents the original positions of the boundary vertices, wheareas U_bc for the goal positions of them.
for(int bi = 0;bi<b.size();bi++)
{
V_bc.row(bi) = V.row(b(bi));
switch(S(b(bi)))// value in S represents the group order of boundary vertex, of which -1 stands for interior vertex.
{
case 0:
// Don't move handle 0
U_bc.row(bi) = V.row(b(bi));
break;
case 1:
// move handle 1 down
U_bc.row(bi) = V.row(b(bi)) + RowVector3d(0,-50,0);
break;
case 2:
default:
// move other handles forward
U_bc.row(bi) = V.row(b(bi)) + RowVector3d(0,0,-25);
break;
}
}
// Pseudo-color based on selection
MatrixXd C(F.rows(),3);
RowVector3d purple(80.0/255.0,64.0/255.0,255.0/255.0);
RowVector3d gold(255.0/255.0,228.0/255.0,58.0/255.0);
for(int f = 0;f<F.rows();f++)
{
if( S(F(f,0))>=0 && S(F(f,1))>=0 && S(F(f,2))>=0)
{
C.row(f) = purple;
}else
{
C.row(f) = gold;
}
}
// Plot the mesh with pseudocolors
igl::viewer::Viewer viewer;
viewer.data.set_mesh(U, F);
viewer.core.show_lines = false;
viewer.data.set_colors(C);
viewer.core.trackball_angle = Eigen::Quaternionf(sqrt(2.0),0,sqrt(2.0),0);
viewer.core.trackball_angle.normalize();
viewer.callback_pre_draw = &pre_draw;
viewer.callback_key_down = &key_down;
//viewer.core.is_animating = true;
viewer.core.animation_max_fps = 30.;
cout<<
"Press [space] to toggle deformation."<<endl<<
"Press 'd' to toggle between biharmonic surface or displacements."<<endl;
viewer.launch();
}
Next, let us focus on the function igl::hamonic in order to see how it constructs the equation and then relate it with the (*1) formula.
At first, we look into the min_quad_with_fiexed.h file
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_MIN_QUAD_WITH_FIXED_H
#define IGL_MIN_QUAD_WITH_FIXED_H
#include "igl_inline.h"
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Sparse>
// Bug in unsupported/Eigen/SparseExtra needs iostream first
#include <iostream>
#include <unsupported/Eigen/SparseExtra>
namespace igl
{
template <typename T>
struct min_quad_with_fixed_data;
// Known Bugs: rows of Aeq **should probably** be linearly independent.
// During precomputation, the rows of a Aeq are checked via QR. But in case
// they're not then resulting probably will no longer be sparse: it will be
// slow.
//
// MIN_QUAD_WITH_FIXED Minimize quadratic energy
//
// 0.5*Z'*A*Z + Z'*B + C with
//
// constraints that Z(known) = Y, optionally also subject to the constraints
// Aeq*Z = Beq
//
// Templates:
// T should be a eigen matrix primitive type like int or double
// Inputs:
// A n by n matrix of quadratic coefficients
// known list of indices to known rows in Z
// Y list of fixed values corresponding to known rows in Z
// Aeq m by n list of linear equality constraint coefficients
// pd flag specifying whether A(unknown,unknown) is positive definite
// Outputs:
// data factorization struct with all necessary information to solve
// using min_quad_with_fixed_solve
// Returns true on success, false on error
//
// Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
// secs, igl/min_quad_with_fixed.h 7.1 secs
//
template <typename T, typename Derivedknown>
IGL_INLINE bool min_quad_with_fixed_precompute(
const Eigen::SparseMatrix<T>& A,
const Eigen::PlainObjectBase<Derivedknown> & known,
const Eigen::SparseMatrix<T>& Aeq,
const bool pd,
min_quad_with_fixed_data<T> & data
);
// Solves a system previously factored using min_quad_with_fixed_precompute
//
// Template:
// T type of sparse matrix (e.g. double)
// DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
// DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
// Inputs:
// data factorization struct with all necessary precomputation to solve
// B n by 1 column of linear coefficients
// Y b by 1 list of constant fixed values
// Beq m by 1 list of linear equality constraint constant values
// Outputs:
// Z n by cols solution
// sol #unknowns+#lagrange by cols solution to linear system
// Returns true on success, false on error
template <
typename T,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ,
typename Derivedsol>
IGL_INLINE bool min_quad_with_fixed_solve(
const min_quad_with_fixed_data<T> & data,
const Eigen::PlainObjectBase<DerivedB> & B,
const Eigen::PlainObjectBase<DerivedY> & Y,
const Eigen::PlainObjectBase<DerivedBeq> & Beq,
Eigen::PlainObjectBase<DerivedZ> & Z,
Eigen::PlainObjectBase<Derivedsol> & sol);
// Wrapper without sol
template <
typename T,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ>
IGL_INLINE bool min_quad_with_fixed_solve(
const min_quad_with_fixed_data<T> & data,
const Eigen::PlainObjectBase<DerivedB> & B,
const Eigen::PlainObjectBase<DerivedY> & Y,
const Eigen::PlainObjectBase<DerivedBeq> & Beq,
Eigen::PlainObjectBase<DerivedZ> & Z);
template <
typename T,
typename Derivedknown,
typename DerivedB,
typename DerivedY,
typename DerivedBeq,
typename DerivedZ>
IGL_INLINE bool min_quad_with_fixed(
const Eigen::SparseMatrix<T>& A,
const Eigen::PlainObjectBase<DerivedB> & B,
const Eigen::PlainObjectBase<Derivedknown> & known,
const Eigen::PlainObjectBase<DerivedY> & Y,
const Eigen::SparseMatrix<T>& Aeq,
const Eigen::PlainObjectBase<DerivedBeq> & Beq,
const bool pd,
Eigen::PlainObjectBase<DerivedZ> & Z);
}
template <typename T>
struct igl::min_quad_with_fixed_data
{
// Size of original system: number of unknowns + number of knowns
int n;
// Whether A(unknown,unknown) is positive definite
bool Auu_pd;
// Whether A(unknown,unknown) is symmetric
bool Auu_sym;
// Indices of known variables
Eigen::VectorXi known;
// Indices of unknown variables
Eigen::VectorXi unknown;
// Indices of lagrange variables
Eigen::VectorXi lagrange;
// Indices of unknown variable followed by Indices of lagrange variables
Eigen::VectorXi unknown_lagrange;
// Matrix multiplied against Y when constructing right hand side
Eigen::SparseMatrix<T> preY;
enum SolverType
{
LLT = 0,
LDLT = 1,
LU = 2,
QR_LLT = 3,
NUM_SOLVER_TYPES = 4
} solver_type;
// Solvers
Eigen::SimplicialLLT <Eigen::SparseMatrix<T > > llt;
Eigen::SimplicialLDLT<Eigen::SparseMatrix<T > > ldlt;
Eigen::SparseLU<Eigen::SparseMatrix<T, Eigen::ColMajor>, Eigen::COLAMDOrdering<int> > lu;
// QR factorization
// Are rows of Aeq linearly independent?
bool Aeq_li;
// Columns of Aeq corresponding to unknowns
int neq;
Eigen::SparseQR<Eigen::SparseMatrix<T>, Eigen::COLAMDOrdering<int> > AeqTQR;
Eigen::SparseMatrix<T> Aeqk;
Eigen::SparseMatrix<T> Aequ;
Eigen::SparseMatrix<T> Auu;
Eigen::SparseMatrix<T> AeqTQ1;
Eigen::SparseMatrix<T> AeqTQ1T;
Eigen::SparseMatrix<T> AeqTQ2;
Eigen::SparseMatrix<T> AeqTQ2T;
Eigen::SparseMatrix<T> AeqTR1;
Eigen::SparseMatrix<T> AeqTR1T;
Eigen::SparseMatrix<T> AeqTE;
Eigen::SparseMatrix<T> AeqTET;
// Debug
Eigen::SparseMatrix<T> NA;
Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> NB;
};
#ifndef IGL_STATIC_LIBRARY
# include "min_quad_with_fixed.cpp"
#endif
#endif
only note this part:
// MIN_QUAD_WITH_FIXED Minimize quadratic energy // // 0.5*Z'*A*Z + Z'*B + C with // // constraints that Z(known) = Y, optionally also subject to the constraints // Aeq*Z = Beq
With this mathematical equation, it would be mush easier for us to read the source code.
we label the matrix equation as (*2).
................................................................................(*2)
Afterwards, we get into the harmonic.cpp
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "harmonic.h"
#include "cotmatrix.h"
#include "massmatrix.h"
#include "invert_diag.h"
#include "min_quad_with_fixed.h"
#include <Eigen/Sparse>
template <
typename DerivedV,
typename DerivedF,
typename Derivedb,
typename Derivedbc,
typename DerivedW>
IGL_INLINE bool igl::harmonic(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedF> & F,
const Eigen::PlainObjectBase<Derivedb> & b,
const Eigen::PlainObjectBase<Derivedbc> & bc,
const int k,
Eigen::PlainObjectBase<DerivedW> & W)
{
using namespace Eigen;
typedef typename DerivedV::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,1> VectorXS;
SparseMatrix<Scalar> L,M,Mi;
cotmatrix(V,F,L);
switch(F.cols())
{
case 3:
massmatrix(V,F,MASSMATRIX_TYPE_VORONOI,M);
break;
case 4:
default:
massmatrix(V,F,MASSMATRIX_TYPE_BARYCENTRIC,M);
break;
}
invert_diag(M,Mi);
SparseMatrix<Scalar> Q = -L;
for(int p = 1;p<k;p++)
{
Q = (Q*Mi*-L).eval();
}
const VectorXS B = VectorXS::Zero(V.rows(),1);
min_quad_with_fixed_data<Scalar> data;
min_quad_with_fixed_precompute(Q,b,SparseMatrix<Scalar>(),true,data);
W.resize(V.rows(),bc.cols());
for(int w = 0;w<bc.cols();w++)
{
const VectorXS bcw = bc.col(w);
VectorXS Ww;
if(!min_quad_with_fixed_solve(data,B,bcw,VectorXS(),Ww))//const VectorXS B = VectorXS::Zero(V.rows(),1);
{
return false;
}
W.col(w) = Ww;
}
return true;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template specialization
template bool igl::harmonic<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, int, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template bool igl::harmonic<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, int, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
template bool igl::harmonic<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, int, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
#endif
Here, matrix Q is like:
or, in the code expression way
where subscript a stands for all vertices like k for known, u for unknown, l for lagrange (i.e. a = k + u)
function min_quad_with_fixed_precompute and min_quad_with_fixed_solve try to build the linear system and solve it.
Now, let‘s turn to min_quad_with_fixed.cpp to check those two functions. They are little bit complex, so here I just pick the important things to say:
In min_quad_with_fixed_precompute function,
const Eigen::SparseMatrix<T> A = 0.5*A2;// Due to the fact that the solution is doubled, they use half of A.
where A2 is matrix Q above.
data.preY = Aulk + AkulT;
new_A = cat(1, cat(2, A, AeqT ),
cat(2, Aeq, Z ));
slice(new_A,data.unknown_lagrange,data.unknown_lagrange,NA);
, whose size is
At this point, I‘ve gotten the left side matrix of (*2), let‘s keep going upon the right side.
VectorXT BBeq(B.size() + Beq.size());
BBeq << B, (Beq*-2.0);
// Build right hand side
VectorXT BBequl;
igl::slice(BBeq,data.unknown_lagrange,BBequl);
MatrixXT BBequlcols;
igl::repmat(BBequl,1,cols,BBequlcols);//int cols = Y.cols(); here Y only has one column, if Y has multiple columns, so does the solution.
MatrixXT NB;
if(kr == 0)
{
NB = BBequlcols;
}else
{
NB = data.preY * Y + BBequlcols;// Y : const VectorXS bcw = bc.col(w); here Y only has one column, if Y has multiple columns, so does the solution.
}
data.preY * Y is like:
which is the matrix B on the right side of formula (*2)
BBeq << B, <pre name="code" class="cpp" style="font-size: 13.3333px;">BBeq << B, (Beq*-2.0);here using (Beq*-2.0) rather than Beq is to obtain the negative doubled X solution
the whole linear system seems like :
the one used in the code which yields the negative doubled X solution is like:
then using
sol *= -0.5;
标签:
原文地址:http://blog.csdn.net/seamanj/article/details/51769868