码迷,mamicode.com
首页 > 其他好文 > 详细

Matlab 进行两个体数据的配准 并显示配准误差 彩色化

时间:2016-06-30 12:51:37      阅读:320      评论:0      收藏:0      [点我收藏+]

标签:

进行两个体数据间的配准,并且显示配准后的误差:

http://cn.mathworks.com/help/images/ref/imregister.html?requestedDomain=cn.mathworks.com

 这里采用的图片是matlab子带的两张MR膝盖图,“knee1.dcm” 作为参考图像,"knee2.dcm"为浮动图像!

Plain Text code
?
1
2
fixed = dicomread(‘knee1.dcm‘);      % 读参考图像fixed
moving = dicomread(‘knee2.dcm‘); %  读浮动图像moving


可能接下来大家关注的问题就是这两幅图像到底有什么区别,这种区别又有多大的可视化程度,下面就为推荐两个比较好用的函数用于观测两幅图像的区别。
Plain Text code
?
1
2
figure, imshowpair(moving, fixed, ‘method‘);
title(‘Unregistered‘);


imshowpair函数就是指以成双成对的形式显示图片,其中一个重要的参数就是‘method’,他又4个选择
(1)‘falsecolor’ 字面意思理解就是伪彩色的意思了,其实就是把两幅图像的差异用色彩来表示,这个是默认的参数。
(2)‘blend’ 这是一种混合透明处理类型,技术文档的翻译是alpha blending,大家自己理解吧。
(3)‘diff’ 这是用灰度信息来表示亮度图像之间的差异,这是对应‘falsecolor’的一种方式。
(4)参数‘monotage’可以理解成‘蒙太奇’,这是一种视频剪辑的艺术手法,其实在这里我们理解成拼接的方法就可以了。
为什么在这里罗里吧嗦的说这么多的显示呢,大家知道"人靠衣装,美靠...."(就不多说了吧),总之就是一个好的视觉效果能给人以耳目一新的效果。
技术分享
嗯嗯,这个就是蒙太奇的效果了,
技术分享
技术分享
这两个则分别是伪彩色,混合透明处理了,至于大家接受那个就要看自己的爱好了
说到了这里终于结束了这关没有意义的读图环节,请大家原谅我的无耻吧。

二,初始配准(粗配准)
初始配准就是大致的使图像对其,使其差别不要太明显,以方便下一步的精细配准环节。
函数imregconfig这在个环节可是主角,从名字上看就知道他要设置一些参数和方法了,其实他真正的作用是配置优化器和度量准则,
Plain Text code
?
1
[optmizer, metric] = imregconfig(modality);

参数modality指定fixed image, moving image之间的关系,有两种选择‘monomodal’, ‘multimodal‘两种,分别质量两幅图像是单一模态还是多模态,根据需要自己选择。
返回的参数optimizer是用于优化度量准则的优化算法,这里有
registration.optimizer.RegularStepGradientDescent 或者 registration.optimizer.OnePlusOneEvolutionary两种可供选择。
输出参数metric则是注明了度量两幅图片相似度的方法,提供了均方误差(registration.metric.MeanSquares)和互信息(registration.metric.MattesMutualInformation)两种供选择。
当然大家也可以根据结构扩充这两个参数。
到这里优化器和度量准别就已将做好了,是不是简单到没朋友。

要上大菜了,配准代码
Plain Text code
?
1
2
3
movingRegisteredDefault = imregister(moving, fixed, ‘affine‘, optimizer, metric);
figure, imshowpair(movingRegisteredDefault, fixed);
title(‘A: Default registration‘);


imregister函数根据取得的optimizer,metric参数对2D,3D参考图像做变换(transform)目的是fixed,moving image对其,大家关注到有一个参数‘affine’,他是指该变化是仿射变换,同样该参数还可以选为
‘translation’ (x,y)坐标平移变换,不牵涉到旋转个尺度变换
‘rigid’ 刚性变换(平移和旋转)
‘similarity’ 改变换包括了平移,旋转和尺度变换
‘affine’ 在similarity的基础上加入了shear(图像的剪辑)
技术分享
该图片就是粗配准的结果了,大家可以在右上角看到明显的不重合现象。

三,提高配准精度
粗配准的结果一般情况下达不到实际应用的要求,为此很有必要进一步提高精度,如果有对精度要求不高的朋友看到这里就可以结束了。
Plain Text code
?
1
2
disp(‘optimizer‘);
disp(‘metric‘);

这两条指令可以看到默认生成的优化器和度量函数参数,当然这里提高精度的途径就是通过修改这两个参数了!
技术分享
在这里我们通过修改两个参数,观察对配准效果的改进:
(1)改变优化器的步长已达到对更加精细的变换。
Plain Text code
?
1
2
3
4
optimizer.InitialRadius = optimizer.InitialRadius/3.5;
movingRegisteredAdjustedInitialRadius = imregister(moving, fixed, ‘affine‘, optimizer, metric);
figure, imshowpair(movingRegisteredAdjustedInitialRadius, fixed);
title(‘Adjusted InitialRadius‘);

把原步长缩小为原来的3.5倍,结果如下
技术分享
貌似效果还是有点的啊,大家在看右上角的阴影好像不见了
(2)在(1)基础上改变最大迭代次数
Plain Text code
?
1
2
3
4
optimizer.MaximumIterations = 300;
movingRegisteredAdjustedInitialRadius300 = imregister(moving, fixed, ‘affine‘, optimizer, metric);
figure, imshowpair(movingRegisteredAdjustedInitialRadius300, fixed);
title(‘B: Adjusted InitialRadius, MaximumIterations = 300, Adjusted InitialRadius.‘);

效果如下:正上的阴影好像也减小了
技术分享

四,改变初始条件提高精度
这里的思想就像我们在做雕塑一样,假如我们要用石头雕一个人,首先我们可以大刀阔斧的把头部留出来,然后把脖子留的比头部更细,简单的说就是美女留出S轮廓,或者o型的(哈哈,对号入座就可以了),下一步精雕细琢的时候就会轻松很多,这里的初始条件就是先用简单的变换做出一个初始配准图像,然后以初始配准的结果作为输入做精细配准。
大致做法如下:
Plain Text code
?
1
tformSimilarity = imregtform(moving,fixed,‘similarity‘,optimizer,metric);

用similarity的变换方式做初始配准,或者你还可以用rigid,transform的方式都可以
Plain Text code
?
1
tformSimilarity = imregtform(moving,fixed,‘similarity‘,optimizer,metric);

在这里imregtform把变化矩阵输出;
然后用imref2d限制变换后的图像与参考图像有相同的坐标分布
Plain Text code
?
1
Rfixed = imref2d(size(fixed));


imwarp函数执行几何变换,当然依据则是tformSimilarity的变换矩阵了。
Plain Text code
?
1
2
3
movingRegisteredRigid = imwarp(moving,tformSimilarity,‘OutputView‘,Rfixed);
figure, imshowpair(movingRegisteredRigid, fixed);
title(‘C: Registration based on similarity transformation model.‘);

得到的tformsimilarity.T就是传说中的变换矩阵了
tformSimilarity.T=    1.0331   -0.1110         0
                                    0.1110    1.0331         0
                                   -51.1491    6.9891    1.0000
下面就是精配准的部分了:
Plain Text code
?
1
2
3
4
movingRegisteredAffineWithIC = imregister(moving,fixed,‘affine‘,optimizer,metric,...
    ‘InitialTransformation‘,tformSimilarity);
figure, imshowpair(movingRegisteredAffineWithIC,fixed);
title(‘D: Registration from affine model based on similarity initial condition.‘);

初始配准结果:技术分享
进一步精细配准:技术分享

五,到这里就是你说了算了Deciding When Enough is Enough
Plain Text code
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
figure
imshowpair(movingRegisteredDefault, fixed)
title(‘A - Default settings.‘);
 
figure
imshowpair(movingRegisteredAdjustedInitialRadius, fixed)
title(‘B - Adjusted InitialRadius, 100 Iterations.‘);
 
figure
imshowpair(movingRegisteredAdjustedInitialRadius300, fixed)
title(‘C - Adjusted InitialRadius, 300 Iterations.‘);
 
figure
imshowpair(movingRegisteredAffineWithIC, fixed)
title(‘D - Registration from affine model based on similarity initial condition.‘);

选择一个合适的,理想的你想要的结果,去飞去装逼吧。

代码全文如下:

%% Registering Multimodal MRI Images
% This example shows how you can use |imregister| to automatically
% align two magnetic resonance images (MRI) to a common coordinate
% system using intensity-based image registration.  Unlike some other
% techniques, it does not find features or use control points.
% Intensity-based registration is often well-suited for medical and
% remotely sensed imagery.

% Copyright 2011-2013 The MathWorks, Inc.

%% Step 1: Load Images
% This example uses two magnetic resonance (MRI) images of a knee.
% The fixed image is a spin echo image, while the moving image is a
% spin echo image with inversion recovery.  The two sagittal slices
% were acquired at the same time but are slightly out of alignment.

fixed = dicomread('knee1.dcm');
moving = dicomread('knee2.dcm');

%%
% The |imshowpair| function is a useful function for visualizing
% images during every part of the registration process.  Use it to see
% the two images individually in a montage fashion or display them
% stacked to show the amount of misregistration.

figure, imshowpair(moving, fixed, 'montage')
title('Unregistered')

%%
% In the overlapping image from |imshowpair|, gray areas correspond to
% areas that have similar intensities, while magenta and green areas
% show places where one image is brighter than the other.  In some
% image pairs, green and magenta areas don't always indicate
% misregistration, but in this example it's easy to use the color
% information to see where they do.

figure, imshowpair(moving, fixed)
title('Unregistered')


%% Step 2: Set up the Initial Registration
% The |imregconfig| function makes it easy to pick the correct
% optimizer and metric configuration to use with |imregister|. These
% two images have different intensity distributions, which suggests a
% multimodal configuration.

[optimizer,metric] = imregconfig('multimodal');

%%
% The distortion between the two images includes scaling, rotation,
% and (possibly) shear.  Use an affine transformation to register the
% images.
%
% It's very, very rare that |imregister| will align images perfectly
% with the default settings.  Nevertheless, using them is a useful way
% to decide which properties to tune first.

movingRegisteredDefault = imregister(moving, fixed, 'affine', optimizer, metric);

figure, imshowpair(movingRegisteredDefault, fixed)
title('A: Default registration')

%% Step 3: Improve the Registration
% The initial registration is not very good. There are still significant
% regions of poor alignment, particularly along the right edge.  Try to
% improve the registration by adjusting the optimizer and metric
% configuration properties.
%
% The optimizer and metric variables are objects whose properties
% control the registration.

disp(optimizer)
disp(metric)

%%
% The InitialRadius property of the optimizer controls the initial step
% size used in parameter space to refine the geometric transformation. When
% multi-modal registration problems do not converge with the default
% parameters, the InitialRadius is a good first parameter to adjust. Start
% by reducing the default value of InitialRadius by a scale factor of 3.

optimizer.InitialRadius = optimizer.InitialRadius/3.5;

movingRegisteredAdjustedInitialRadius = imregister(moving, fixed, 'affine', optimizer, metric);
figure, imshowpair(movingRegisteredAdjustedInitialRadius, fixed)
title('Adjusted InitialRadius')

%%
% Adjusting the InitialRadius had a positive impact. There is a noticeable
% improvement in the alignment of the images at the top and right edges.

%%
% The MaximumIterations property of the optimizer controls the maximum
% number of iterations that the optimizer will be allowed to take.
% Increasing the MaximumIterations allows the registration search to run
% longer and potentially find better registration results. Does the
% registration continue to improve if the InitialRadius from the last step
% is used with a large number of interations?

optimizer.MaximumIterations = 300;
movingRegisteredAdjustedInitialRadius300 = imregister(moving, fixed, 'affine', optimizer, metric);

figure, imshowpair(movingRegisteredAdjustedInitialRadius300, fixed)
title('B: Adjusted InitialRadius, MaximumIterations = 300, Adjusted InitialRadius.')

%%
% Further improvement in registration were achieved by reusing the
% InitialRadius optimizer setting from the previous registration and
% allowing the optimizer to take a large number of iterations.

%% Step 4: Use Initial Conditions to Improve Registration
% Optimization based registration works best when a good initial condition
% can be given for the registration that relates the moving and fixed
% images. A useful technique for getting improved registration results is
% to start with more simple transformation types like 'rigid', and then use
% the resulting transformation as an initial condition for more complicated
% transformation types like 'affine'.
%
% The function |imregtform| uses the same algorithm as imregister, but
% returns a geometric transformation object as output instead of a
% registered output image. Use |imregtform| to get an initial
% transformation estimate based on a 'similarity' model
% (translation,rotation, and scale).
%
% The previous registration results showed in improvement after modifying
% the MaximumIterations and InitialRadius properties of the optimizer.
% Keep these optimizer settings while using initial conditions while
% attempting to refine the registration further.

tformSimilarity = imregtform(moving,fixed,'similarity',optimizer,metric);

%%
% Because the registration is being solved in the default MATLAB coordinate
% system, also known as the intrinsic coordinate system, obtain the default
% spatial referencing object that defines the location and resolution of
% the fixed image.

Rfixed = imref2d(size(fixed));

%%
% Use |imwarp| to apply the geometric transformation output from
% |imregtform| to the moving image to align it with the fixed image. Use
% the 'OutputView' option in |imwarp| to specify the world limits and
% resolution of the output resampled image. Specifying Rfixed as the
% 'OutputView' forces the resampled moving image to have the same
% resolution and world limits as the fixed image.

movingRegisteredRigid = imwarp(moving,tformSimilarity,'OutputView',Rfixed);
figure, imshowpair(movingRegisteredRigid, fixed);
title('C: Registration based on similarity transformation model.');

%% 
% The "T" property of the output geometric transformation defines the
% transformation matrix that maps points in moving to corresponding
% points in fixed.

tformSimilarity.T

%%
% Use the 'InitialTransformation' Name/Value in imregister to refine this
% registration by using an 'affine' transformation model with the 'similarity'
% results used as an initial condition for the geometric transformation.
% This refined estimate for the registration includes the possibility of
% shear.

movingRegisteredAffineWithIC = imregister(moving,fixed,'affine',optimizer,metric,...
    'InitialTransformation',tformSimilarity);
figure, imshowpair(movingRegisteredAffineWithIC,fixed);
title('D: Registration from affine model based on similarity initial condition.');

%%
% Using the 'InitialTransformation' to refine the 'similarity' result of
% |imregtform| with a full affine model has also yielded a nice
% registration result.

%% Step 5: Deciding When Enough is Enough
% Comparing the results of running |imregister| with different
% configurations and initial conditions, it becomes apparent that there are
% a large number of input parameters that can be varied in imregister, each
% of which may lead to different registration results.

figure
imshowpair(movingRegisteredDefault, fixed)
title('A - Default settings.');

figure
imshowpair(movingRegisteredAdjustedInitialRadius, fixed)
title('B - Adjusted InitialRadius, 100 Iterations.');

figure
imshowpair(movingRegisteredAdjustedInitialRadius300, fixed)
title('C - Adjusted InitialRadius, 300 Iterations.');

figure
imshowpair(movingRegisteredAffineWithIC, fixed)
title('D - Registration from affine model based on similarity initial condition.');

%%
% It can be difficult to quantitatively compare registration results
% because there is no one quality metric that accurately describes the
% alignment of two images. Often, registration results must be judged
% qualitatively by visualizing the results. In The results above, the
% registration results in C) and D) are both very good and are difficult to
% tell apart visually.

%% Step 6: Alternate Visualizations
% Often as the quality of multimodal registrations improve it becomes more
% difficult to judge the quality of registration visually.  This is because
% the intensity differences can obscure areas of misalignment.  Sometimes
% switching to a different display mode for |imshowpair| exposes hidden
% details.  (This is not always the case.)

displayEndOfDemoMessage(mfilename)


Matlab 进行两个体数据的配准 并显示配准误差 彩色化

标签:

原文地址:http://blog.csdn.net/chuckdanglars/article/details/51787713

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!