码迷,mamicode.com
首页 > 其他好文 > 详细

codeforces 687D Dividing Kingdom II 带权并查集(dsu)

时间:2016-06-30 23:21:13      阅读:160      评论:0      收藏:0      [点我收藏+]

标签:

题意:给你m条边,每条边有一个权值,每次询问只保留编号l到r的边,让你把这个图分成两部分

         一个方案的耗费是当前符合条件的边的最大权值(符合条件的边指两段点都在一个部分),问你如何分,可以让耗费最小

分析:把当前l到r的边进行排序,从大到小,从大的开始不断加边,判断当前能否形成二分图,如果能形成二分图,继续加边

         如果不能形成二分图,那当前边的权值就是最小耗费(是不是很眼熟)

       思路很清晰,现在我们要解决的是如何判断可以形成二分图,有两种,一个是2染色当前图(肯定超时)

       所以只剩一种方法,带权并查集

      带权并查集三步走

       1:设计权值数组relation[i],代表i节点和它的根的关系,0代表属于一个部分,1代表不属于一个部分

       2:路径压缩,relation[i]=relation[i]^relation[fa[i]],递归得到和根的关系

       3:合并根节点,relation[i]=relation[u]^relation[v]^1;

    

技术分享
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <stack>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=5e5+5;
int fa[N],relation[N];
struct Edge{
  int u,v,w,id;
  bool operator<(const Edge &rhs)const{
      return w>rhs.w;
  }
}p[N];
int find(int x){
  if(x==fa[x])return x;
  int fx=find(fa[x]);
  relation[x]^=relation[fa[x]];
  return fa[x]=fx;
}
bool Union(int u,int v){
  int fx=find(u),fy=find(v);
  if(fx==fy){
    if(relation[u]==relation[v])
      return false;
    return true;
  }
  fa[fx]=fy;
  relation[fx]=relation[u]^relation[v]^1;
  return true;
}
int main(){
    int n,m,q;
    scanf("%d%d%d",&n,&m,&q);
    for(int i=1;i<=m;++i){
      scanf("%d%d%d",&p[i].u,&p[i].v,&p[i].w);
      p[i].id=i;
    }
    sort(p+1,p+1+m);
    while(q--){
      int l,r,ret=-1;
      scanf("%d%d",&l,&r);
      for(int i=1;i<=n;++i)fa[i]=i,relation[i]=0;
      for(int i=1;i<=m;++i){
        if(p[i].id<l||p[i].id>r)continue;
        if(!Union(p[i].u,p[i].v)){
          ret=p[i].w;break;}
      }
      printf("%d\n",ret);  
    }
    return 0;
}
View Code

 

codeforces 687D Dividing Kingdom II 带权并查集(dsu)

标签:

原文地址:http://www.cnblogs.com/shuguangzw/p/5631326.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!