码迷,mamicode.com
首页 > 其他好文 > 详细

hdu-1695 GCD(莫比乌斯反演)

时间:2016-07-01 21:30:21      阅读:121      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:

GCD

Time Limit: 6000/3000 MS (Java/Others)  

  Memory Limit: 32768/32768 K (Java/Others)


Problem Description
 
Given 5 integers: a, b, c, d, k, you‘re to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you‘re only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.
 

 

Input
 
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 

 

Output
 
For each test case, print the number of choices. Use the format in the example.
 

 

Sample Input
 
2
1 3 1 5 1
1 11014 1 14409 9
 

 

Sample Output
 
Case 1: 9
Case 2: 736427
 
 
题意:
 
求gcd(x,y)==k的(x,y)对数;1<=x<=b,1<=y<=d;
 
思路:
 
gcd(x,y)=k,即gcd(x/k,y/k)=1;
变成求[1,b/k][1,d/k]中的互质的对数;
f(d)表示gcd(x,y)=d的对数;F(d)表示d|gcd(x,y)的对数;
这里求的是f(1);由莫比乌斯反演f(n)=∑(n|d)µ(d/n)F(d)知
f(1)=∑µ(i)*F(i)   (1<=i<=min(b/k,d/k));
 
AC代码:
 
 

hdu-1695 GCD(莫比乌斯反演)

标签:

原文地址:http://www.cnblogs.com/zhangchengc919/p/5634157.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!